المادة: رياضات عامة الوقت: ساعة ونصف

إمتحان الفصل الأول

Answer *three* out of the four given questions:

- Consider the region R bounded by the curves y = x and $y = x^2 (7-pts)$ I
 - a. Draw the above region R.
 - **b.** Find the area of the region R.
 - c. Prove that the centroid of the given region R is of coordinates $(\frac{1}{2}, \frac{2}{5})$.
- Consider the parabolic region $R: 0 \le y \le 4 x^2$. II-(See adjacent figure).(7-pts)
 - a. Recopy the given region and indicate the bounding curves.
 - b. Use double integration to evaluates the mass of the lamina: M of density function $\delta(x, y) = 2x$
 - c. Use the above part to find the center of mass of the given lamina is of coordinates $\left(0; \frac{4}{3}\right)$.

III- Sketch then calculate the integral *I* bounded by a rectangular region: (6-pts)

$$I = \int_{0}^{3} \int_{0}^{2} (4 - x^{2}) dy dx.$$

- IV- A solid right (non-circular) cylinder has its base R in the xy-plane and is bounded from above by the paraboloid: $z = x^2 + y^2$. (6-pts)
 - a. Sketch the region R in the xy-plane: which is enclosed by the lines y = x, x = 0 & x + y = 2.
 - b. Express the volume of the region that lies under the paraboloid and above the region R, by a double integral.
 - c. Prove that the volume of this region is: $V = \frac{4}{3}units^3$. (Note: $(a-b)^3 = a^3 3a^2b + 2ab^2 b^3$)