
امتحان الفصل الأول

المادة: رياضيات عامة الوقت: ساعة ونصف الفرع: إنكليزي

Integral in rectangular regions: (4-pts) I-Consider the double integral: $I = \int_0^3 \int_{-2}^0 (x^2y - 2xy) dy dx$.

- 1. Determine the limits of x & y.
- 2. Draw the specified region of integration.
- 3. Prove that $I = -\frac{8}{3}$
- Double integrals as volume: (4-pts) Consider the region R enclosed between the straight lines (d): y = x, (Δ) : x = 0 and (1): y = -x + 2.
 - 1. Determine the coordinates of A, the point of intersection of the straight lines (d) & (l).
 - 2. Sketch the region R and plot the point A.
 - 3. Consider the surface $z = f(x, y) = x^2 + y^2$.
 - a. Specify the limits of integration of the integral of: $V = \iint_R f(x, y) dy dx$
 - b. Prove that: $V = \frac{448}{3}$
 - c. What does the value *V* of represent?
- **III-** Consider the region R bounded by the curves y = x and $y = x^2$
 - a. Draw the above region R.
 - **b.** Find the area of the region *R*.
 - c. Prove that the centroid of the given region R is of coordinates $(\frac{1}{2}, \frac{2}{5})$.
- *IV* Consider the parabolic region $R: 0 \le y \le 4 x^2$. (See adjacent figure).(6-pts)
 - 1) Recopy the given region and indicate the bounding curves.
 - 2) Use double integration to evaluates the mass of the lamina: M of density function $\delta(x, y) = 2x$
- 3) Use the above part to find the center of mass of the given lamina is of coordinates $\left(0, \frac{4}{3}\right)$.

Good work