لرقم :

الإسم:

المدّة: ساعتين

مسابقة في الرياضيات الانكليزي

1st exercise: (2 ½ pts)

- 1. a. Develop then reduce $(x-1)^2 x(x-2)$
 - **b.** Deduce the value of $897^2 898 \times 896$.
- **2.** Given $E(x) = \frac{3x^2 4}{4 x^2} + \frac{4}{2 x} \frac{2}{2 + x}$
 - **a.** Determine the domain of definition of E(x).
 - **b.** Prove that $E(x) = \frac{3x}{2-x}$

2nd exercise: (2pts)

Given A=
$$\sqrt{12} - \sqrt{72} + \sqrt{3} + \sqrt{18}$$

B= $\sqrt{27} + \sqrt{50} - \sqrt{32} - \sqrt{12}$

- 1. Simplify and reduce A and B
- **2.** Calculate $\frac{A}{A-B}$ and rationalize the denominator of the obtained expression.

3rd exercise: (2 1/4 pts)

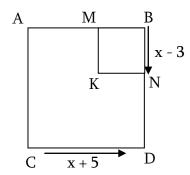
Given a rectangle ABCD such that AB= $\sqrt{4+\sqrt{7}}$, BC= $\sqrt{\frac{7}{2}}$ + $\sqrt{\frac{1}{2}}$

- **1.** Prove that ABCD is a square.
- **2.** Develop $(\sqrt{7} + 1)^2$
- **3.** Calculate the radius of the circle circumscribed about triangle ABC.

4th exercise: (2pts)

Given $F(x) = [x + 5]^2 - 16$

- **1.** Factorize F(x)
- **2.** Solve the equation (x+1)(x+9) = 0
- **3.** On the figure ABCD is a square with side (x + 5). For What valves of x the area of ABCD is four times the area of the square MBNK of side equal x 3.



5th exercise: (3 ½ pts)

Given $A(x) = (x-1)^3 - 2(x-1)(x+3)$

$$B(x)=(2x-3)(x-2)^2-18x+27$$

- **1.** Factorize B(x) and prove that A(x) = (x-1)(x-5)(x+1)
- 2. Let $F(x) = \frac{B(x)}{A(x)}$
 - **a.** Find the domain of definition of F(x).
 - **b.** Simplify F(x).
- **3.** Calculate the value of F(x) for $x = \sqrt{2}$, and rationalize its denominator.
- 4. Calculate x such that $F(x) = \frac{\sqrt{3x^2 6x}}{x 1}$

6th exercise: (3pts)

Consider the polynomial $E(x) = (5-3x)^2 + (9x^2-25) + 2(5-3x)(4x+3)$

- 1. Develop, reduce and order E(x)
- **2.** Calculate m, n and p such that $F(x) = (3x 5)(mx^2 + nx + p)$ is identical to E(x)

7th exercise: (5pts)

Draw a circle (C) of center O and diameter AB = 10cm. Let I be the midpoint of [OB], and (d) be the perpendicular to [AB] at I cuts the circle at M. J be a point on (d) such that MJ = 2IM.

- 1. Calculate AM such that IM = $2.5\sqrt{3}$
- 2. Calculate IJ and JB.
- **3.** Prove that AJ = 2 IA
- **4.** Deduce the nature of triangle AIJ.