ليسه دي ژار

2011 - 2010	بربة الأولى لعام	التح	الشهادة المتوسطة	
	الرقم :	الإسم :	المدة : ساعتين	مسابقة في الرياضيات الانكليزي

إرشادات عامة:

- يسمح بإستعمال ألة حاسبة غير قابلة للبرمجة
- يمكن الإجابة على ألمسائل بالترتيب الذي تريد
 - يرجى الإجابة بخط واضح ومرتب
 - العلامة القصوى من 30
 - عدد المسائل: 5

1st exercise: (3pts)

Given the real numbers: $A = \frac{7}{18} \times \frac{2}{7} - \left(\frac{5}{3} - 1\right)^2$, $B = \frac{3 \times 10^2 \times 5 \times 10^4}{12 \times (10^3)^3}$, $C = \sqrt{250} - \sqrt{490} + 2\sqrt{81}$

- 1) Write A in the form of an irreducible fraction. (¾ pt)
- Verify that B can be written in the form of 2^m × 5ⁿ where m and n are integers to be determined, then verify that B is a decimal number. (1pt)
- 3) Simplify C and determine its inverse without a radical in the denominator. $(1 \frac{1}{4} \text{ pts})$

2nd exercise: (6pts)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, **with justification**, its correct answer.

No	Oractions	Answers			
110.	Quescions	а	Ъ	С	
1.	a = $(4\sqrt{5}-2)(\sqrt{5}+1)-(\sqrt{5}-1)^2$ is	an integer	a positive irrational number	a negative irrational number	
2.	Among $\sqrt{7.1}$; $\sqrt{18}$; $\sqrt{8^2 - 4^2}$; $\frac{\sqrt{48}}{\sqrt{12}}$; $\sqrt{10^{10}}$	one irrational number	two irrational numbers	three irrational numbers	
3.	If x is a negative real number then $\sqrt{\frac{x^2}{4} + \frac{4x^2}{9}} =$	$\frac{5x}{6}$	$\frac{-5x}{6}$	does not exist	
4.	Given a right triangle ABC at A such that G - x B A If triangle IBC is isosceles at I then x =	$\frac{3}{5}$	$\frac{5}{3}$	$\frac{13}{3}$	
5.	Calculate the numerical value of : $4a^2 + \frac{25}{a^2}$ if $2a + \frac{5}{a} = 8$	can't be calculated	64	44	
6.	$-5^2 - 3^2 - 7^2 =$	$(-15)^2$	- 83	-15 ²	

3rd exercise: (7 ½ pts)

Consider the two polynomials:

- $P(x) = 4(x-3)^{2} (x+1)^{2}$ and $Q(x) = (x-7)^{2} (x+1)(7-x) 49 + x^{2}$
- 1) a) Show that P(x) can be written in the form of the remarkable identity $a^2 b^2$ then factorise it.(1pt)
 - b) Show that Q(x) = (x 7) (3x + 1). (1pt)
 - c) Verify that $Q\left(\frac{-1}{3}\right) = 0$ and justify the inequality $Q\left(-\frac{1}{3}\right) + 110 > P\left(-\sqrt{2}\right)$ (don't use a calculator). (1 ¹/₄ pts)
- 2) a) Write P(x) in the form $ax^2 + bx + c$ where a, b, and c are integers to be determined. (1pt)
 - b) Determine the values of the real numbers m and n so that the polynomial $A(x) = (2m-1)x^2 + (3n-2)x + 35$ is identical to P(x). (1pt)
- 3) Consider the fractional expression $F(x) = \frac{P(x)}{Q(x)}$.
 - a) Precise the conditions for the existence of F(x), and say why it is not defined for any integer. (1pt)
 - b) Simplify F(x), then solve the equation F(x) = -1. (1 ¹/₄ pts)

4th exercise: (4 1/2 pts)

Consider a right triangle SOR at S such that OS = x - 2 and RO = 2x - 1 as indicated in the figure to the right:

- 1) For what values of x, does OS exist? Justify. ($\frac{1}{2}$ pt)
- 2) a) Show that $SR^2 = 3(x^2 1)$. (³/₄ pt)

b) Does there exist a value for x such that SR = 3? Justify (1pt)

c) Show that the area of the triangle OSR is given by: $A(x) = \frac{(x-2)\sqrt{3(x^2-1)}}{2}$. (¾ pt)

d) Write the area of triangle OSR in another way then deduce the length SH in case x = 3. (1pt)

e) Write SH in scientific notation. (1/2 pt)

5th exercise: (9pts)

Consider a circle (C) of center O and radius R = 5cm. Designate by [AB] and [DE] two perpendicular diameters of this circle (C). C being the point of the arc AD such that AC = 5cm, and [Ax) is the semi-straight-line holding [AC].

- 1) Draw a figure. (½ pt)
- 2) Show that triangle ACO is equilateral and justify that triangle ACB is semi-equilateral. (1pt)
- 3) Show that $ACE = 45^{\circ}$ then deduce that [CE) is the interior bisector of ACB and that [CD) is the exterior bisector of ACB. (1 ¹/₂ pts)
- 4) Let F be the orthogonal projection of B on (CD).
 - a) Show that (CE) and (BF) are parallel. Deduce the nature of the triangle CBF.(1 ¹/₂ pts)
 - b) Show that (OF) is the perpendicular bisector of [BC]. (1pt)
- 5) (FB) cuts the circle (C) at N.
 - a) Knowing that the quadrilateral ACNB is cyclic, calculate CNB then deduce that $BCN = 15^{\circ}$.(1pt)
 - b) Calculate CD then show that $DNC = 15^{\circ}$. Deduce that (DN) is parallel to (CB). (1 ¹/₂ pts)
- 6) (CE) cuts [AB] at M, Calculate AMC. (1pt)