مسابقة في الرياضيات الانكليزي الريّة : ساعتين : الإسم :

إرشادات عامة:

$$
\begin{aligned}
& \text { يسمح بإستعمال ألة حاسبة غير قابلة للبرمجة } \\
& \text { - يمكن الإجابة على ألدسائل بالترتيب الذي تريد } \\
& \text { يرجى الإجابة بخط واضح ومرتب } \\
& \text { العلامة القصوى من } 30 \\
& \text { عدد المسائل: } 5
\end{aligned}
$$

$1^{\text {st }}$ exercise: (3 pts)

Given the real numbers: $\mathrm{A}=\frac{7}{18} \times \frac{2}{7}-\left(\frac{5}{3}-1\right)^{2}, \mathrm{~B}=\frac{3 \times 10^{2} \times 5 \times 10^{4}}{12 \times\left(10^{3}\right)^{3}}, \mathrm{C}=\sqrt{250}-\sqrt{490}+2 \sqrt{81}$

1) Write A in the form of an irreducible fraction. $(3 / 4 \mathrm{pt})$
2) Verify that B can be written in the form of $2^{m} \times 5^{n}$ where m and n are integers to be determined, then verify that B is a decimal number. (1pt)
3) Simplify C and determine its inverse without a radical in the denominator. ($1 \frac{1}{4} \mathrm{pts}$)

$2^{\text {nd }}$ exercise: (6 pts)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, with justification, its correct answer.

3 ${ }^{\text {rd }}$ exercise: ($71 / 2 \mathrm{pts}$)

Consider the two polynomials:

$$
P(x)=4(x-3)^{2}-(x+1)^{2} \text { and } Q(x)=(x-7)^{2}-(x+1)(7-x)-49+x^{2}
$$

1) a) Show that $P(x)$ can be written in the form of the remarkable identity $a^{2}-b^{2}$ then factorise it.(1pt)
b) Show that $Q(x)=(x-7)(3 x+1) .(1 p t)$
c) Verify that $\mathrm{Q}\left(\frac{-1}{3}\right)=0$ and justify the inequality $\mathrm{Q}\left(-\frac{1}{3}\right)+110>\mathrm{P}(-\sqrt{2})$ (don't use a calculator). ($1^{1 / 4} \mathrm{pts}$)
2) a) Write $P(x)$ in the form $a x^{2}+b x+c$ where a, b, and c are integers to be determined. (1 pt)
b) Determine the values of the real numbers m and n so that the polynomial $A(x)=(2 m-1) x^{2}+(3 n-2) x+35$ is identical to $P(x) .(1 p t)$
3) Consider the fractional expression $F(x)=\frac{P(x)}{Q(x)}$.
a) Precise the conditions for the existence of $\mathrm{F}(\mathrm{x})$, and say why it is not defined for any integer. (1pt)
b) Simplify $F(x)$, then solve the equation $F(x)=-1 .\left(1 \frac{1}{4} \mathrm{pts}\right)$

$4^{\text {th }}$ exercise: ($41 / 2 \mathrm{pts}$)

Consider a right triangle $S O R$ at S such that $O S=x-2$ and $R O=2 x-1$ as indicated in the figure to the right:

1) For what values of x, does OS exist? Justify. ($1 / 2 \mathrm{pt}$)
2) a) Show that $\mathrm{SR}^{2}=3\left(\mathrm{x}^{2}-1\right) \cdot(3 / 4 \mathrm{pt})$
b) Does there exist a value for x such that $\mathrm{SR}=3$? Justify (1 pt)

c) Show that the area of the triangle OSR is given by: $A(x)=\frac{(x-2) \sqrt{3\left(x^{2}-1\right)}}{2} \cdot(3 / 4 \mathrm{pt})$
d) Write the area of triangle OSR in another way then deduce the length SH in case $\mathrm{x}=3$. $(1 \mathrm{pt})$
e) Write SH in scientific notation. ($1 / 2 \mathrm{pt}$)

$5^{\text {th }}$ exercise: (9pts)

Consider a circle (C) of center O and radius $R=5 \mathrm{~cm}$. Designate by $[A B]$ and [DE] two perpendicular diameters of this circle (C). C being the point of the arc $A D$ such that $A C=5 \mathrm{~cm}$, and $[A x)$ is the semi-straight-line holding [AC].

1) Draw a figure. ($1 / 2 \mathrm{pt}$)
2) Show that triangle ACO is equilateral and justify that triangle ACB is semi-equilateral. (1pt)
3) Show that $\mathrm{ACE}=45^{\circ}$ then deduce that [CE) is the interior bisector of ACB and that [CD) is the exterior bisector of ACB . ($1^{1 / 2} \mathrm{pts}$)
4) Let F be the orthogonal projection of B on (CD).
a) Show that (CE) and (BF) are parallel. Deduce the nature of the triangle CBF.($1 \frac{1}{2} \mathrm{pts}$)
b) Show that (OF) is the perpendicular bisector of [BC]. (1pt)
5) (FB) cuts the circle (C) at N .
a) Knowing that the quadrilateral ACNB is cyclic, calculate CNB then deduce that $\mathrm{BCN}=15^{\circ}$.(1pt)
b) Calculate CD then show that $\mathrm{DNC}=15^{\circ}$. Deduce that (DN) is parallel to (CB). ($1 \frac{1}{2} \mathrm{pts}$)
6) (CE) cuts $[\mathrm{AB}]$ at M , Calculate AMC . (1pt)
