مسابقة في الرياضيات الانكليزي المدّة: ساعتين الإسم: الرقم:

رشادات عامة:

- يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة

- يمكن الإجابة على المسائل بالترتيب الذي تريد

- يرجى الإجابة بخط واضح ومرتب

- العلامة القصوى من 30

- عدد المسائل: 5

1st exercise: (6 ½ pts)

In the table below, only one of the proposed answers to each question is correct. Write down the

number of each question and give, with justification, the answer corresponding to it.

Nº	Questions	Answers		
		A	В	C
1.	Let $A = \frac{2^n (3^{n+1} - 3^n)}{6^{n+1} - 6^n}$, then $A =$	1	$\frac{5}{2}$	$\frac{2}{5}$
2.	Given the numbers: $X = \frac{9^{11} + 9^{10} + 9^9}{3^{20} + 3^{19} + 3^{18}}.$ $Y = 4(2 + \sqrt{8})^2 (3 - 2\sqrt{2}) - 2.$ then	Y = 2X	X = 2Y	X = Y
3.	Consider the equation : $3x\sqrt{2} = \sqrt{2} - 3x$. The solution of this equation is x=	$\frac{2-\sqrt{2}}{3}$	$\frac{1}{6}$	$\frac{2+\sqrt{2}}{3}$
4.	The number $H = \sqrt{(2.\overline{1})^2 - \frac{37}{81}} =$	$\frac{1}{9}$	9	2
5.	Let ABCD be a right trapezoid. (C) is a semi-circle of diameter [AD] and H is the orthogonal projection of Bon [DC] such that AB = x, AD = HC = 4cm. $AD = HC = 4cm$ C If the area of the shaded region is equal to $20 - 2\pi$ cm ² then x =	$x = 4\sqrt{2}$	$x = 3\pi + 3$	<i>x</i> = 3

2nd exercise: (3pts)

Consider the two expressions: $X = \frac{1}{a+1} + \frac{1}{b+1}$ and $Y = \frac{1}{a} + \frac{1}{b}$ where a and b are real numbers.

- 1) For what values of a and b is the expression X defined? (34 pt)
- 2) a) In case X = 0, deduce that a + b = -2. (34 pt)
 - b) If Y = $\frac{1}{3}$ then show that ab = -6. (34 pt)
 - c) Calculate $a^2 + b^2$. (34 pt)

3rd exercise: (6 ½ pts)

Consider a rectangle ABCD of center O such that AC = $4\sqrt{3}$ cm and $\stackrel{\circ}{BAC} = 30^{\circ}$.

- 1) Show that the dimensions AB= 6 and AD= $2\sqrt{3}$. (1½ pts)
- 2) Let EFB be a triangle drawn inside the rectangle ABCD such that $EB = \frac{\sqrt{6} + \sqrt{2}}{2}$ and $FB = \sqrt{2 + \sqrt{3}}$ as indicated to the right.

- b) Show that the triangle EFB is right isosceles. (11/2 pts)
- c) Calculate A_I , the area of triangle EFB, then deduce A_d , the area of the domain included between rectangle ABCD and the triangle EFB (A_d = area of AFECD). (1½ pts)
- d) Calculate the approximate value of Aa to the nearest 0.001 by excess. (½ pt)

4th exercise: (5½ pts)

Consider the following polynomial: $P(x) = 3x^2 - 2x - 40$.

- 1) Show that P(x) gets the same value in the two following cases x = -3 and $x = \frac{11}{3}$.(1½ pts)
- 2) a) Develop and reduce (x + 3) (3x 11). (½ pt)
 - b) Deduce the solutions of the equation P(x) = -7. (34 pt)
- 3) Let Q(x) = (m + n x)(x 3) + p be a polynomial where m, n and p are real numbers.
 - a) Show that $Q(x) = n x^2 + (m 3n)x 3m + p$. (1pt)
 - b) Calculate m, n and p so that P(x) and Q(x) are identical. (1pt)
- 4) Solve the equation Q(x) = -40. (34 pt)

5th exercise: (8 ½ pts)

Consider the angle $x\hat{I}y = 60^{\circ}$ and let [It) be the bisector of $x\hat{I}y$. E is the point on the bisector [It) such that IE = 4 cm. M and N are the orthogonal projections of E on [Ix) and [Iy) respectively.

- 1) Draw a figure. (½ pt)
- 2) Show that without any calculation IM = IN. (3/4 pt)
- 3) Show that the points I, M, E and N belong to the same circle whose center and radius are to be determined. (Don't draw this circle) (1 pt)
- 4) (C) is the circle of center E and radius EM.
 - a) Show that (IN) and (IM) are tangent to the circle (C) at N and M respectively. (1½ pts)
 - b) Determine the nature of triangle IMN. (1 pt)
 - c) (IE) cuts the circle (C) at P. (P is between I and E). Show that P is the midpoint of the arc $\stackrel{\frown}{MN}$.(34 pt)
- 5) J is the point diametrically opposite to P.
 - a) Show that $\hat{MJN} = 60^{\circ}$ then deduce that triangle MNJ is equilateral. (1½ pts)
 - b) Deduce that (MJ) and (IN) are parallel. (¾pt)
 - c) Show that IMJN is a rhombus. (¾ pt)