لسيس دي زار

التجربة الأولى لعام 2009-2010
الثنـهادة المتوسطة
مسـابقة في الرباضبـات الانكليز

إ رشـادات عامـة:

- يسمح بإستعمال ألة حاسبة غير قابلة للبرمجة -- يرجى الإجابة بخط واضح ومرتب

العلامة القصوى من 30

- عدد المسائل: 6

$1^{\text {st }}$ exercise: (4pts)

Decide if each statement is true or false. Justify.

1. Given a triangle ABC such that :

$$
\mathrm{AB}=\left(\frac{3}{4} \times \frac{4}{5} \div \frac{4}{5}\right) \times\left(3.5-\frac{3}{2}\right) \text { and } \mathrm{BC}=0.015 \times 10^{2} \text {; then triangle } \mathrm{ABC} \text { is isosceles at } \mathrm{B} .(1 \mathrm{pt})
$$

2. Given a rectangle $A B C D$ such that $A B=\sqrt{4+\sqrt{7}}$ and $B C=\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}$, then ABCD is a square. (1 pt)
3. $\sqrt{24}$ is half of $\sqrt{48} \cdot(1 / 2 \mathrm{pt})$
4. $\sqrt{(2-\sqrt{5})^{2}}+\frac{4 \sqrt{5}-5}{\sqrt{5}}$ is a natural integer. (pt)
5. The expanded form of $\left(-\frac{3}{2} x-4 \sqrt{5}\right)^{2}$ is $\frac{9}{4} x^{2}+80 .(1 / 2 p t)$

$2^{\text {nd }}$ exercise: (5pts)

Part A:

Consider the two polynomials $P(x)=x^{2}+6 x-16$ and $Q(x)=(x+a)^{2}-25$.

1. Determine the value of a so that $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are identical polynomials. (pt)
2. Suppose in this part that $\mathrm{a}=3$. Deduce the roots of $\mathrm{P}(\mathrm{x})$. Interpret the meaning of the roots obtained.($11 / 2 \mathrm{pts}$)

Part B:

Consider a triangle ABC (see figure to the right).

1. Show that the area $A(x)$ of triangle $A B C$ is written as $A(x)=\frac{x^{2}+6 x}{2}$. (pt)
2. Calculate x if $A(x)=8$. Are the values of x thus obtained accepted or
 rejected? Justify. ($1 \frac{1}{2}$ pts)

$3^{\text {rd }}$ exercise: ($41 / 2 \mathrm{pts}$)

Consider the following number A:

$$
A=\sqrt{23.36 \overline{1}}+\frac{7 \times \sqrt{3^{4} \times(108)^{3}}}{\sqrt{75 \times 3^{8} \times 6^{4}}}
$$

1. Show that $\sqrt{23.36 \overline{1}}=\frac{29}{6}$. $(1 \mathrm{pt})$
2. Verify that $\frac{7 \times \sqrt{3^{4} \times(108)^{3}}}{\sqrt{75 \times 3^{8} \times 6^{4}}}=\frac{14}{5}$. $\left(1 \frac{1 / 2}{\mathrm{pts})}\right.$
3. Calculate A, then write A^{-2} in scientific notation. (2pts)

$4^{\text {th }}$ exercise: (5pts)

Consider the algebraic expression: $\mathrm{A}=(\mathrm{x}-\sqrt{2})^{2}-8$

1. Develop, reduce, and order A in the ascending order of the powers of $x .(1 / 2 ~ p t)$
2. Calculate A when $x=\sqrt{18} \cdot(1 / 2 p t)$
3. Show that a factorised form of A is: $(x-3 \sqrt{2})(x+\sqrt{2}) \cdot(3 / 4 \mathrm{pt})$
4. Given $\mathrm{B}=\mathrm{x}(\mathrm{x}-3)+\mathrm{x} \sqrt{2}-3 \sqrt{2}$. Write B as a product of two factors of first degree each. $(3 / 4 \mathrm{pt})$
5. Consider $\mathrm{F}=\frac{\mathrm{A}}{(\mathrm{x}-3)(\mathrm{x}+\sqrt{2})}$
a) For which values of x, the fractional expression F is defined? ($1 / 2 \mathrm{pt}$)
b) Simplify F. $(1 / 2 \mathrm{pt})$
c) Calculate the numerical value of F when $\mathrm{x}=2 \sqrt{2}$ and give the answer as a rational number in the denominator. ($1^{1 / 2} \mathrm{pts}$)

$5^{\text {th }}$ exercise: ($61 / 2 \mathrm{pts}$)

Consider a semi - circle (C) of center O and diameter $\mathrm{AB}=12 \mathrm{~cm} . \mathrm{H}$ is the midpoint of [AO] and (d) is the perpendicular to $(A B)$ at H that cuts the semi - circle (C) at M.

1. Draw a figure.$(1 / 2 \mathrm{pt})$
2. What is the nature of triangle AMO? Deduce the length AM then MH. ($11 / 2 \mathrm{pts}$)
3. Determine the nature of triangle $A M B$. Deduce the exact value of $M B$, then give an approximate value to the nearest 10^{-3}. (2pts)
4. The perpendicular bisector of $[\mathrm{AB}]$ cuts (AM) at E .
a) Show that the triangle ABE is equilateral. ($1 / 2 \mathrm{pt}$)
b) Show that M is the midpoint of [AE]. (1 pt)
c) Calculate OE then deduce that $\mathrm{OE}=\mathrm{MB}$. $(1 \mathrm{pt})$

$6^{\text {th }}$ exercise: (5pts)

Consider a rectangle ABCD such that $\mathrm{BD}=2 \mathrm{BC}$ and let O be its center. (see figure below).

1. Reproduce the figure. $(3 / 4 \mathrm{pt})$
2. The perpendicular bisector of [BD] intersects $[\mathrm{AB}]$ at M and $[\mathrm{CD}]$ at N .
a) Show that the two triangles MBO and NDO are congruent. Deduce that $\mathrm{BM}=\mathrm{DN}$. (1 pt)
b) Show that BMDN is a rhombus. ($11 / 4 \mathrm{pts}$)
3. Show that the triangle OBC is equilateral. Deduce the measure of MBO . (1pt)
4. Show that $[\mathrm{BN})$ is the bisector of $\mathrm{OBC} \cdot(1 \mathrm{pt})$

