لليسيه دي ز زار

الرقم :	الإلس :	الدّة : ساعتين	مسابقة في الرياضيات الانكليزي

إرشادات عامة:

$1^{\text {st }}$ exercise: (6pts)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, with justification, its correct answer.

No.	Questions	Answers		
		a	b	c
1.	The rational number 3.777... is inserted between	$\frac{11}{3} \text { and } \frac{13}{3}$	$\frac{38}{9}$ and $\frac{43}{9}$	$\frac{31}{9} \text { and } \frac{35}{9}$
2.	$\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are two polynomials of same degree 3 , then their product has a degree:	$3 \times 3=9$	$3^{3}=27$	$3+3=6$
3.	$A(x)=\sqrt{\frac{9}{x^{2}}+\frac{6}{x}+1}$ where $\mathrm{x}<-3$ then $\mathrm{A}(\mathrm{x})=$	$-\frac{x+3}{x}$	$\frac{x+3}{x}$	$\frac{3}{x}+1+\sqrt{\frac{6}{x}}$
4.	Given the two real numbers $x=\frac{1+\frac{1}{2} \times \frac{4}{5}}{2+\frac{4}{5}}$ and $y=\frac{\sqrt{18}+\sqrt{8}}{\sqrt{200}}$ then,	$x=y$	$\mathrm{x}<\mathrm{y}$	$x>y$
5.	A, B, and C are three points such that: $A B=\frac{6+4 \sqrt{3}}{3+\sqrt{3}}, A C=2+2 \sqrt{3}$, and $B C=1+\sqrt{3}$ then,	ABC is an isosceles triangle at B	$A B C$ is a semiequilateral triangle	B is the midpoint of [AC]

$\underline{2}^{\text {nd }}$ exercise: (6 pts)

Consider a triangle MON such that:
$N O=\sqrt{15}-\sqrt{3}, M N=\frac{2 \sqrt{5}+2}{3+\sqrt{5}}$, and $M O=3 \sqrt{45}-4 \sqrt{20}-\sqrt{80}+\sqrt{125}-\sqrt{4}$ (unit of length is cm).

1) a) Write MO in the form $a \sqrt{5}+b$ where a and b are integers to be determined. ($3 / 4 \mathrm{pt}$)
b) Rationalize the denominator of MN , then deduce that $\mathrm{MO}=2 \mathrm{MN}$. (1 pt)
2) a) Develop and reduce $M O^{2}, M N^{2}$ and $N O^{2} \cdot\left(1 \frac{1}{2} \mathrm{pts}\right)$
b) Deduce that triangle MON is semi equilateral. (1pt)
3) a) Show that the area of triangle $M O N=(3 \sqrt{3}-\sqrt{15}) \mathrm{cm}^{2} .(3 / 4 \mathrm{pt})$
b) Compare the area of triangle MON to that of the rectangle ABCD of dimensions $(-2+2 \sqrt{5})$ and $(\sqrt{15}+\sqrt{3}) .(1 \mathrm{pt})$

$3^{\text {rd }}$ exercise: (6 pts)

Consider the two polynomials:

$$
\begin{aligned}
& P(x)=(3 x-a)^{2}+(3 a+x) x-(a-b)(a+b)-b(2 x+b-1) ; \\
& Q(x)=10 x^{2}-7 x+1 \\
& E(x)=8 x^{2}-8 x+2+(3-6 x)(3 x+2)-5+20 x^{2}
\end{aligned}
$$

1) a) Show that $P(x)=10 x^{2}-(3 a+2 b) x+b \cdot(1 \mathrm{pt})$
b) Calculate a and b so that $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are identical polynomials. (1pt)
2) Show that $Q(x)=(5 x-1)(2 x-1)(1 / 2 \mathrm{pt})$
3) Write $\mathrm{E}(\mathrm{x})$ in the form of a product of two factors of the first degree. (1pt)
4) Suppose in this part that $\boldsymbol{E}(\boldsymbol{x})=(\mathbf{2 x - 1})(\mathbf{5} \boldsymbol{x} \mathbf{3})$. Consider the fractional expression $M(x)=\frac{Q(x)}{E(x)}$
a) Determine the values of x for which $\mathrm{M}(\mathrm{x})$ is not defined. ($3 / 4 \mathrm{pt}$)
b) Hussein says that $\mathrm{M}(\mathrm{x})$ is defined for any natural number. Is he right? Justify. ($3 / 4 \mathrm{pt}$)
c) Simplify $\mathrm{M}(\mathrm{x})$, then solve the equation $M(x)=\frac{x-1}{x+2} \cdot(1 \mathrm{pt})$

$4^{\text {th }}$ exercise: (3 pts)

Given the following numbers:
$A=\frac{2}{3}-\frac{2}{3} \times\left(\frac{4}{5}\right)^{-1} \div\left(\frac{3}{2}-1\right) ; \quad B=\left(2^{15}+2^{16}\right) \div\left(2^{14}+2^{16}\right) \quad$ and $\quad C=\frac{0.48 \times\left(10^{3}\right)^{4} \times 0.001}{0.3 \times 10^{-4} \times 100}$

1) Show that A is an integer. (1pt)
2) Show that $B=0.012 \times 10^{2}$ then justify if B is a decimal number. (1 pt)
3) Write C in scientific notation. (1pt)

$5^{\text {th }}$ exercise: (9pts)

Given a circle (C) of center O and radius 6 cm . $[\mathrm{AB}]$ is a diameter of the circle, (Δ) and $\left(\Delta^{\prime}\right)$ are two tangents to (C) at A and B respectively.
M is a point of the circle (C) such that $\hat{M} B=60^{\circ}$.

1) Draw a figure and justify how you placed point M. (1pt)
2) a) Calculate $M \hat{A} B$ then deduce that the triangle $A M B$ is semi-equilateral. (1pt)
b) Deduce the lengths of the sides $[\mathrm{BM}]$ and $[\mathrm{AM}]$. (1pt)
3) The tangent to (C) at M cuts the tangents (Δ) and (Δ^{\prime}) at E and F respectively.
a) Show that $\mathrm{EF}=\mathrm{AE}+\mathrm{BF}$. (1pt)
b) Show that $E \hat{O} F=90^{\circ}$ by two methods:
i) Without any calculation. (1pt)
ii) With calculation. (1pt)
4) The straight-line (OE) cuts [AM] in I.
a) Show that (OI) is parallel to (BM). (1pt)
b) Prove that the point I belongs to a circle (C') of center O and radius $\frac{B M}{2}$. (1pt)
c) Deduce that (AM) is tangent to circle (C') at a point to be determined. (1pt)
