المدّة: ساعتان الإسم: مسابقة في الرياضيات الإنكليزي إرشادات عامة:

يسمح بإستعمال ألة حاسبة غير قابلة للبرمجة

يمكن الإجابة على ألمسائل بالترتيب االذي تريد

يرجى الإجابة بخط واضح ومرتب العلامة القصوى من 30

1st exercise: (5.5pts)

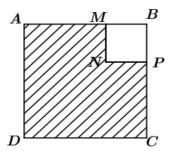
In the following table, **just one** of the proposed answers is correct. Indicate the number of the question and its corresponding answer and justify. (1pt – 1pt– 1.5pts - 1pt- 1pt)

No	Questions	Answers		
		a	В	С
1.	Given $A = \frac{3-8a+9b}{a-4b}$ with $a \neq 4b$. If $a = \frac{1}{2}$ and $b = \frac{1}{3}$ then $A =$	2.4	$\frac{-3}{5}$	-2.4
2.	If the reciprocal of $\sqrt{2}$ is a root of $S(x) = (3x - a)(2x + a)$ then $a =$	$\frac{3\sqrt{2}}{2} \ or \ -\sqrt{2}$	$\frac{-3\sqrt{2}}{2}$ or $\sqrt{2}$	$\frac{3\sqrt{2}}{2}$
3.	If $M = \frac{4^{n+1} - 4^n}{2^{n+1} - 2^n} \& P = \left(\frac{14}{25} \times \frac{60}{21} + 5^{-1}\right) \times \left(\frac{3}{5}\right)^{-1}$, then	$M = P \times 2^n$	$\frac{M}{P} = 2^{-n}$	None
4.	The number $H = \sqrt{(2.\overline{1})^2 - \frac{37}{81}}$, then $H =$	$\frac{1}{9}$	9	2
5.	If $A(x) = \sqrt{\frac{16}{x^2} + \frac{8}{x} + 1}$ where x <- 4 then A(x)=	$-\frac{x+4}{x}$	$\frac{x+4}{x}$	$\frac{4}{x} + 2\sqrt{\frac{2}{x}} + 1$

2nd exercise: (14pts)

The following parts are independent

Part-A: Given the triangle ABC such that:


$$AB = \frac{4^8 - 8^6}{128^2 - 16^4}; \quad BC = \left(\frac{1}{2}\right)^2 - \frac{3}{2^2} + \frac{3^2}{2} \quad \text{and} \quad AC = \left(\sqrt{7 - 2\sqrt{10}} \times \sqrt{7 + 2\sqrt{10}}\right) \left(\frac{\sqrt{8} \times 2\sqrt{27}}{3\sqrt{54}}\right)$$

Show all steps of calculations

- 1) a. Show that **AB=BC**. $(1\frac{1}{2}pts)$
 - b. Show that AC is a square of 2. (1pt)
 - c. Deduce the nature of the triangle ABC and draw it. (34pt)
- 2) a. Let (AH) be the height issued from A and G be the centroid of triangle ABC. Calculate the lengths of AH and HG. (1½pt)
 - b. Deduce the area of triangle HGC. (3/4pt)

PartB: In the adjacent figure:

- **ABCD** is a square of side AB = x 6 cm.
- MBPN is a square of side $MB = 1 \ cm$. (x is a real number expressed in cm so that x > 6)
- 1. Express, in terms of **x**, the area of the **shaded domain.** (1pt)
- 2. Calculate **x** if the area of the shaded domain equals 3 cm². (1pt)

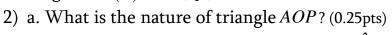
Part C:

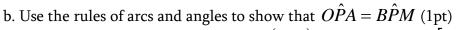
In the orthonormal system of axes (x'Ox & y'Oy), consider the points A(2;3), B(2;-3) & C(n;3)

- 1) Prove that the point *C* is on the y axis if $n = \sqrt{(s+w)^2} + s + w$, where (s+w) < 0 (3/4pt)
- 2) a. Place the points A,B & C in the given system. (1pt)
 - b. Determine the nature of the triangle ABC.(1pt)
 - c. Let (e) be the circle circumscribed about the triangle ABC .

Determine the coordinates of I the center of (e), and prove that the radius of (e) $is\sqrt{10}$. (1.5pts)

- 3) Let *F* be any point in the plane so that, $IF = \sqrt{19 6\sqrt{10}}$
 - a. Expand $(3 \sqrt{10})^2$ then write *IF* in form of one radical only. (1.5pts)
 - b. Deduce the relative position of F with respect to (e).(3/4pt)


3rdexercise: (4pts)


Given the following polynomials: P(x) = (x+1)(x+2)(x-3) + 3(x+2) and E(x) = (x-2)(2x+4)

- 1. Show that P(x) = x(x-2)(x+2) (1pt)
- 2. Let A(x) = P(x) E(x).
 - a. Factorize A(x).(1pt)
 - b. Solve the equation A(x) = 0.(34pt)
- 3. Suppose in this part that A(x) = (x-2)(3x-1), and let $M(x) = \frac{P(x)}{A(x)}$
 - a. What does M(x) represent? (0.5pts)
 - b. Determine the values of x for which M(x) is not defined. (3/4pt)

4thexercise: (6.5pts)

- (C) is a circle of center O and diameter [AB].
- M is a point of (AB) and outside the circle (C).
- (C') is another circle of center O' and diameter [OM].
- (C) and (C') intersect at P & Q.
- 1) Justify that $O\hat{P}M = 90^{\circ}$ then deduce that (MP) is tangent to (C) at P.(1pt)

- 3) a. What is the relative position of (OO') with respect to [PQ]. (0.75pt) b. Use the triangle MPQ to prove that M is the midpoint of the major arc PQ of (C) (1pt)
- **4)** Suppose in this part that $O\hat{M}Q = 30^{\circ}$ and O'M = 6cm
 - a) Calculate MQ (1pt)
 - b) Deduce the perimeter of the triangle MPQ (1.5pts)

Good Work

(C')