الرقم:

الإسم:

المدّة: ساعتان

سابقة في الرياضيات الإنكليزي

- يسمح بإستعمال ألة حاسبة غير قابلة للبرمجة
- يمكن الإجابة على ألمسائل بالترتيب االذي تريد
 - يرجى الإجابة بخط واضح ومرتب العلامة القصوي من 20

1st exercise: (53/4pts)

Part A: (23/4pts)

Consider in the adjacent figure:

- (S) is a circle of center O and diameter [AB]
- (d) is the tangent to (S) at point A and C is a point on (d) such that:

$$OC = \sqrt{\frac{81^2 \times 3^3}{9^4}} - \frac{\sqrt{8^2 + 6^2 + 8}}{2} + \sqrt{(\sqrt{37} - 1)(\sqrt{37} + 1)} cm \text{ and}$$

$$AC = \left(\sqrt{\frac{3}{2}} + \frac{1}{\sqrt{2}}\right)^2 - 2\left(1 - \sqrt{3}\right)cm$$

- 1) Simplify OC and show that OC = 6cm. (1pt)
- 2) Verify that AC = $3\sqrt{3}$ cm. (1pt)
- 3) Let *R* be the radius of the circle (S), where 2 < R < 6Calculate the numerical value of R . (34 pt)

Part B: (3pts)

In this part, let H be a point on the circle (S) of diameter [AB] such that AH = a & BH = b, where a & b are two strictly positive numbers. [BH) cuts the line (d) at point D. Take AB = 6cm

- 1) If $a = \frac{49^4 + 5 \times 7^9}{7^8 \times 9} 1$ then show that a is a **multiple of 3**. (%**4pt**)
- 2) a) Determine the exact nature of triangle ABH then calculate the measure of the $arc\widehat{BH}$. (1½pts)
 - b) Show that $b = 3\sqrt{3}$ then frame b between two consecutive integers, and find its approximate value to the nearest 10^{-2} by excess. (1pt)

2nd exercise: (7³/₄pts)

Part A: (43/4pts)

Given the two polynomials: $A(x) = (2x-1)(x+1) - x^2 + x - 2$ and B(x) = (x+3)(x-2) + 2x(x+3)

- 1) Develop and reduce A(x). (34pt)
- 2) Prove that A(x) + 4 is the square of a binomial. (½pt)
- 3) Show that A(x) = (x-1)(x+3). (34pt)
- 4) Factorize B(x). (½pt)
- 5) Consider the rational expression $F(x) = \frac{A(x)}{B(x)}$
 - a) For what values of x is F(x) defined? Justify. (1/2pt)
 - b) Simplify F(x) then calculate $F(\sqrt{2})$ (1pt)
 - c) The equation $F(x) = \frac{4}{11}$ admits **no solution** in the domain of F(x). Justify. (34pt)

Part B: (3pts)

In the adjacent figure, ABCD is a square of side 6cm, where

$$AE = DH = BF = x$$
 and $BG = 1cm$. $(0 < x < 6)$

1) Show that the area of the shaded domain FGHE is expressed by: $N(x) = x^2 - 4x + 21$. (1 ¹/₄pts)

the symmetric of O with respect to the point $K\left(\frac{21}{2};1\right)$ (1pt)

In the adjacent figure:

 \checkmark E is any point on circle (C) of center O, radius R and diameter [AB].

 \checkmark (D) is tangent to (C) at A.

The tangent to (C) at E cuts (D) at M and (AB) at F.

 \checkmark [EO) cuts (D) at G

b) [OM) cuts the circle (C) at I.

What is the relative position of I with respect to $\operatorname{arc}\widehat{AE}$? (½**pt**)

collinear. (11/4pts) 4) Show that the points O, E, F & S belong to the same circle, whose center and diameter are to be precised. (1pt)

5) Prove that the triangle MGF is isosceles. (34pt)

6) Suppose that $A\widehat{M}E = 60^{\circ}$.

a) We admit that AM = $R\sqrt{3}$. Prove that the area of triangle AME is $\frac{3R^2\sqrt{3}}{4}$. (34pt)

b) Determine the nature of the quadrilateral AOEI. (34pt)

(C)

Good Work