الرقم :	الإسم	الددّة : ساعتان	مسابقة في الرياضيات الإنكليزي
		إ رشثادات عامـة: -- يـركن الإجابة على ألدسائل بالترتيب الالذي تريد - يرجى الإجابة بخط واضح ومرتب - العلامة القصوى من 20	

Exercise I: ($61 / 2 p t s$)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, with justification, its correct answer.

No.	Questions	Answers		
		a	b	c
1.	(C) is a circle of center \mathbf{O} and radius $\mathbf{O A}=\left(\frac{1-\sqrt{5}}{4}\right)^{2}+\frac{\sqrt{5}}{8}$. If B is a point such that $O B=\frac{\sqrt{45}-\sqrt{80}+2 \sqrt{125}}{\sqrt{7} \times \sqrt{35}-7 \sqrt{5}+3} \times \frac{1}{2 \sqrt{5}}$, then B is located: (2pts)	In the interior part of (C)	On (C)	In the exterior part of (C)
2.	ABC is a triangle right angled at A such that: $\sin B \hat{C} A=2 \sin A \widehat{B} C$, then: (11/4pts)	$B C^{2}=3 A C^{2}$	$B C^{2}=5 A C^{2}$	$B C=3 A C$
3.	In the adjacent figure: $\checkmark \quad(\mathrm{C})$ is a circle of center \mathbf{O}. \checkmark (PM) and (PN) are two tangents drawn from an external point P, where \mathbf{M} and \mathbf{N} are points of tangency. $\checkmark \quad \mathrm{K}$ is the symmetric of \mathbf{N} with respect to P. Then the nature of triangle MNK is	Right	Right Isosceles	Semi equilateral
4.	In triangle $\boldsymbol{A B C}$, If $\boldsymbol{M} \& \boldsymbol{I}$ are the respective midpoints of $[B C] \&[A C]$, then $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{M A}+\overrightarrow{M C}=$ ($11 / 4 \mathrm{pts}$)	$2 \overrightarrow{A I}$	$\overrightarrow{A B}$	$2 \overrightarrow{A C}$

Exercise II:(6pts)

The following parts of the exercise are independent:

Part A:(4pts)

Given:
$A=\left(\frac{1}{3}+\frac{1}{6}\right)^{2}+\left(\frac{1}{2^{3}}+\frac{3}{4} \times \frac{5}{2}\right), \quad B=\frac{0.02^{2} \times 16-4.8 \times 10^{-3}}{\sqrt{5^{2}-3^{2}}}, \quad C=\frac{1+\frac{1}{2}+\frac{1}{4}}{1-\frac{1}{2}-\frac{1}{4}}$
$D=2 \sqrt{32}+\sqrt{50}-5 \sqrt{18}+2 \sqrt{8} \quad \& E=(2 \sqrt{3}-2)^{2}+2(5 \sqrt{3}-8)$

1) Show that $A=\left(\frac{3}{2}\right)^{2}$. $(3 / 4 \mathrm{pt})$
2) Write \boldsymbol{B} in scientific notation and show that \boldsymbol{C} is positive. ($11 / 2 \mathrm{pts}$)
3) Write \boldsymbol{D} in the form $\boldsymbol{a} \sqrt{2}$ where \boldsymbol{a} is an integer to be determine. ($1 / 2 \mathrm{pt}$)
4) Show that $E=2 \sqrt{3}$. $(3 / 4 \mathrm{pt})$
5) Deduce that $D^{2}+E^{2}=(2 \sqrt{5})^{2} \cdot(1 / 2 \mathrm{pt})$

Part B:(2pts)

1) Simplify $S=\sqrt{1.3 \overline{4}} \times \sqrt{10}+\frac{15(3-1)}{3}+1$. (1pt)
2) A car located at a point C is controlling a drone 50 m away from it at point D. Find the height AD of the drone from ground if $\boldsymbol{A} \widehat{\boldsymbol{C}} \boldsymbol{D}=\boldsymbol{S} .(1 \mathrm{pt})$

Exercise3: (7½pts)

In the adjacent figure we have:
$\checkmark(C)$ is a circle of center O, diameter $[A B]$ and radius $\boldsymbol{R}=\mathbf{2 c m}$.
$\checkmark\left(\mathbf{d}_{1}\right)$ and $\left(\mathrm{d}_{2}\right)$ are two tangents to (C) respectively at \mathbf{A} and B.
$\checkmark \mathbf{M}$ is a point of (C) such that $\boldsymbol{A M}=\mathbf{2 c m}$.
\checkmark The tangent to (\mathbf{C}) at \mathbf{M} cuts $\left(\mathbf{d}_{1}\right)$ and $\left(\mathbf{d}_{2}\right)$ at \mathbf{P} and \mathbf{Q} respectively.

1) Reproduce the figure. (1pt)
2) What does (OP) represent to [MA]? Justify. ($1 / 2 \mathrm{pt}$)
3) Express PQ as function of PA and QB . $(3 / 4 \mathrm{pt})$
4) $[\mathrm{MA}]$ intersects $[\mathrm{PO}]$ at R and $[\mathrm{MB}]$ intersects $[\mathrm{OQ}]$ at S .

a) Utilize tangent theorem to verify that $\widehat{\boldsymbol{P O Q}}$ is right angle and deduce that MROS is a rectangle. ($11 / 4 \mathrm{pts}$)
b) Show that S is the midpoint of $[\mathrm{MB}]$. $(1 / 2 \mathrm{pt})$
5) $[\mathrm{MO}]$ intersect $[\mathrm{RS}]$ at I . Calculate RI. $(1 / 2 \mathrm{pt})$
6) Let G be the centroid of triangle MAB . Prove that $\overrightarrow{\boldsymbol{M A}}+\overrightarrow{M B}=\mathbf{6} \overrightarrow{\boldsymbol{G O}}$. (1pt)
7) Let K be the image of S by the translation vector $\overrightarrow{\boldsymbol{O M}}$. Show that the points A, M and K are collinear. $(3 / 4 \mathrm{pt})$
8) a) What is the nature of the triangle MAB. $(3 / 4 \mathrm{pt})$
b) Utilizing trigonometry in a right triangle to calculate SB . $(1 / 2 \mathrm{pt})$
