التجربة الأولى لعام 2019 - 2020	الشهادة المتوسطة		ليسنه دي زار	
الرقم :	الإسم :	المدة : ساعتان	مسابقة في الرياضيات الإنكليزي	
			إرشادات عامة:	
			 يسمح بإستعمال ألة حاسبة غير ق 	
		نيب االذي تريد	 يمكن الإجابة على ألمسائل بالترة 	
		ب	 يرجى الإجابة بخط واضح ومرت 	
			 العلامة القصوى من 20 	

Exercise I: (6½pts)

In the table below, only one among the proposed answers to each question is correct. Write down the number of each question and give, **with justification**, its correct answer.

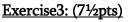
No.	Quantiana	Answers		
INO.	Questions	а	b	С
1.	(C) is a circle of center O and radius $\mathbf{OA} = \left(\frac{1-\sqrt{5}}{4}\right)^2 + \frac{\sqrt{5}}{8}$. If B is a point such that $\mathbf{OB} = \frac{\sqrt{45} - \sqrt{80} + 2\sqrt{125}}{\sqrt{7} \times \sqrt{35} - 7\sqrt{5} + 3} \times \frac{1}{2\sqrt{5}}$, then B is located: (2pts)	In the interior part of (C)	On (C)	In the exterior part of (C)
2.	ABC is a triangle right angled at A such that: $\sin B\hat{C}A = 2\sin A\hat{B}C$, then:(11/4pts)	$BC^2 = 3AC^2$	$BC^2 = 5AC^2$	BC = 3AC
3.	 In the adjacent figure: ✓ (C) is a circle of center O. ✓ (PM) and (PN) are two tangents drawn from an external point P, where M and N are points of tangency. ✓ K is the symmetric of N with respect to P. Then the nature of triangle MNK is 	Right	Right Isosceles	Semi equilateral
4.	In triangle <i>ABC</i> , If <i>M</i> & <i>I</i> are the respective midpoints of [<i>BC</i>]& [<i>AC</i>], then $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{MA} + \overrightarrow{MC} = (1\frac{1}{4}\text{pts})$	2 A Î	ĀB	2 ĂĈ

Exercise II:(6pts)

The following parts of the exercise are independent:

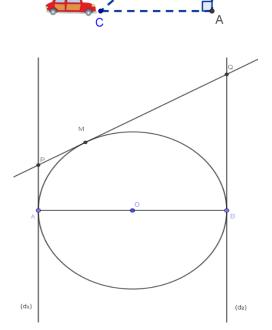
Part A:(4pts)

Given:


$$A = \left(\frac{1}{3} + \frac{1}{6}\right)^2 + \left(\frac{1}{2^3} + \frac{3}{4} \times \frac{5}{2}\right), \quad B = \frac{0.02^2 \times 16 - 4.8 \times 10^{-3}}{\sqrt{5^2 - 3^2}}, \quad C = \frac{1 + \frac{1}{2} + \frac{1}{4}}{1 - \frac{1}{2} - \frac{1}{4}}$$
$$D = 2\sqrt{32} + \sqrt{50} - 5\sqrt{18} + 2\sqrt{8} \quad \& \quad E = \left(2\sqrt{3} - 2\right)^2 + 2\left(5\sqrt{3} - 8\right)$$
$$1) \text{ Show that } A = \left(\frac{3}{2}\right)^2. (\frac{3}{4}\text{pt})$$

- 2) Write **B** in scientific notation and show that **C** is positive. (1½pts)
- 3) Write **D** in the form $a\sqrt{2}$ where **a** is an integer to be determine. (1/2pt)
- 4) Show that $E = 2\sqrt{3}$. (3/4pt)

5) Deduce that
$$D^2 + E^2 = (2\sqrt{5})^2$$
. (½pt)


Part B:(2pts)

- 1) Simplify $S = \sqrt{1.3\overline{4}} \times \sqrt{10} + \frac{15(3-1)}{3} + 1$. (1pt)
- 2) A car located at a point C is controlling a drone 50m away from it at point D. Find the height **AD** of the drone from ground if $A\hat{C}D = S$. (1pt)

In the adjacent figure we have:

- ✓ (C) is a circle of center O, diameter [AB] and radius R = 2cm.
- \checkmark (d1) and (d2) are two tangents to (C) respectively at A and B.
- ✓ **M** is a point of (**C**) such that AM = 2cm.
- ✓ The tangent to (C) at M cuts (d₁) and (d₂) at P and Q respectively.
 - 1) Reproduce the figure. (1pt)
 - 2) What does (OP) represent to [MA]? Justify. (1/2pt)
 - 3) Express PQ as function of PA and QB. (¾pt)
 - 4) [MA] intersects [PO] at **R** and [MB] intersects [OQ] at **S**.
 - a) Utilize tangent theorem to verify that \widehat{POQ} is right angle and deduce that MROS is a rectangle. (14/4pts)
 - b) Show that **S** is the midpoint of [**MB**]. (½**pt**)
 - 5) [MO] intersect [RS] at I. Calculate RI. (1/2pt)
 - 6) Let **G** be the centroid of triangle **MAB**. Prove that $\overrightarrow{MA} + \overrightarrow{MB} = 6\overrightarrow{GO}$. (1pt)
 - 7) Let **K** be the <u>image</u> of **S** by the translation vector \overrightarrow{OM} . Show that the points **A**, **M** and **K** are collinear. (**%**pt)
 - 8) a) What is the nature of the triangle **MAB**. (¾pt)
 - b) <u>Utilizing trigonometry</u> in a right triangle to calculate SB. (½pt)

50m