التجربة الثانية لعام 2008 - 2009

الشهادة المتوسطة

الرقم:

الإسم:

المدّة: ساعتان

مسابقة في الرياضيات الانكليزي

- <u>إرشادات عامة:</u> يسمح بإستعمال ألة حاسبة غير قابلة للبرمجة
- يمكن الإجابة على ألمسائل بالترتيب االذي تريد
 - يرجى الإجابة بخط واضح ومرتب
 - العلامة القصوى من 30

1st exercise: (4pts)

For each question, there is one correct solution, indicate with *justification* the right response.

No.	Questions	Answers		
		a	Ъ	С
1.	If, $A = \frac{\sqrt{2.5 \times 10^3} \times \sqrt{3600}}{\sqrt{2 \times 10^2} \times \sqrt{27 \times 10^4}}$, then	$A = \sqrt{6}$	$A = \frac{\sqrt{6}}{6}$	$A = \frac{\sqrt{6}}{2}$
2.	If $x = (3\sqrt{5} - 1)(\sqrt{5} + 1) - (\sqrt{5} - 1)^2$, then	$x = 10 + 2\sqrt{5}$	$x = 10 + 4\sqrt{5}$	<i>x</i> = 8
3.	If, $r = 2^{15} + 2^{15}$, then	$r = 4^{15}$	$r = 2^{16}$	$r = 2^{30}$
4.	In the coded figure below, ABCD is a quadrilateral $\sqrt{\frac{5cm}{3\sqrt{5}}}$, then	ABCD is a parallelogram	ABCD is a right trapezoid	The four points A, B, C and D belong to the same circle of diameter [AC].

2nd exercise: (4pts)

- 1. a) Compare the numbers $a=3\sqrt{2}$ and $b=2\sqrt{5}$. Then deduce the simplification of $\sqrt{(3\sqrt{2}-2\sqrt{5})^2}$. (½ pt)
 - b) Develop $(1 \sqrt{5})^2$. (½ pt)
 - c) Given $E = 1 + \sqrt{(3\sqrt{2} 2\sqrt{5})^2} 2\sqrt{6 2\sqrt{5}} (1 + \sqrt{2})(\sqrt{2} 4)$. Prove that E is an integer. ($\frac{3}{4}$ pt)
- 2. Given that a, b & c are three real non zero numbers: $\frac{2}{a} = \frac{1}{b} + \frac{1}{c}$.
 - a) Calculate *b*, so that $a = -2 \& c = -\frac{4}{3}$. (3/4 pt)
 - b) Is it possible to find the value of c such that $a = 1.5 \& b = \frac{3}{4}$? Why? (½ pt)
 - c) Suppose in this part that c = -(x + 1) and b = x 1 where x > 0.
 - Prove that $\frac{1}{a} = \frac{1}{x^2 1}$. (½ pt)
 - Calculate x if a = 3. (½ pt)

3rd exercise: (3pts)

- A. 1) Expand and reduce the expression $E = (x-1)^2 (x-2)(x-3)$. (½ pt)
 - 2) Use the preceding result to calculate the expression $A = (9999)^2 9998 \times 9997.(\frac{1}{2} \text{ pt})$
- B. 1) Develop and reduce the expression (x+1)(x-5). (½ pt)
 - 2) Given $f(x) = \frac{3x 6 + (x^2 4x + 4)}{x^2 4x 5}$.
 - a. For what values of x, f(x) is defined? (½ pt)
 - b. Simplify f(x).(½ pt)
 - c. Solve the equation $f(x) = \frac{1}{2}$. (½ pt)

4th exercise: (4pts)

Consider the semi-circle of center O and diameter AB = 6cm. Let C be the midpoint of $arc\widehat{AB}$ and M be any point on the arcBC. [AM] cuts the bisector of \widehat{COM} at I.

- 1) Reproduce and complete the adjacent figure. (½ pt)
- 2) Calculate the measure of the angle \hat{AMC} .(½ pt)
- 3) What does the line (OI) represent with respect to segment [CM]? Justify. (1pt)
- 4) Prove that the triangle *CIM* is a right_isosceles triangle. (1pt)
- 5) Prove that as M describes the arcBC the point I will vary on a fixed circle whose center and radius are to be determined. (1pt)

5th exercise: (5pts)

Consider a circle (C) of center O and diameter AB = 8cm. Let M be the symmetric of O with respect to the point A; and (MT) the tangent at T to the circle (C).

- 1) Draw a figure. (½ pt)
- 2) a) Compute the measure of [MT]&[AT]. Deduce the nature of triangle ATO.(1pt)
 - b) Calculate the measure in degrees of the angle \hat{AMT} . (½ pt)
- 3) Calculate BT and prove that the triangle MTB is isosceles. (1pt)
- 4) The line parallel to (AT) passing through O cuts (MT) at a point E. Calculate the length of OE & TE. What is the nature of triangle MOE? Justify. (1pt)
- 5) Prove that (BT) is tangent to (C) at B.(1pt)