ليسهد دي زار

التجربة الثانية لعام 2010-2011
مسابقة في الرياضيات الانكليزي المدّة : ساعتين : الإسم : الرقم :

$1^{\text {st }}$ exercise: (6pts)

In the table below, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer and justify.

No.	Questions	Answers		
		a	b	c
1.	Given the polynomial $P(x)=4 x^{3}-4 x^{2}+x$, then the equation $P(x)=0$ admits	2 roots as integers	3 roots as integers	1 root as an integer
2.	Given $E=\sqrt{(2-\pi)^{2}}-\sqrt{(2 \pi-3)^{2}}+\sqrt{(10-3 \pi)^{2}}$ then $\mathrm{E}=$	5	$11-4 \pi$	$5+4 \pi$
3.	Given a linear function f such that -2 has an image 9 by f. The image of 3 by f is:	$\frac{-27}{2}$	$\frac{27}{2}$	$\frac{3}{-2}$
4.	A population of bacteria is formed of 1000 bacteria. Knowing that each hour the population increases by 10%, then after 2 hours the number of bacteria is	2200	1210	1300
5.	In the adjacent figure (AB) // (CD), $\mathrm{AB}=6, \mathrm{CO}=1$ and $\mathrm{BC}=4$ then $C D=$	2	3	1

$\underline{2}^{\text {nd }}$ exercise: ($61 / 2 \mathrm{pts}$)

Given a triangle LAR such that:

$$
L A=\frac{5^{248}-3^{2} \times 25^{123}}{4 \times 125^{82}} \quad, \quad R A=(\sqrt{2}-1)(\sqrt{2}+1)-(2 \sqrt{2}-3)^{2}-8(\sqrt{2}-2) \quad \text { and } \quad L R=\frac{4.5 \times 56 \times 1.2}{0.9 \times 4.2 \times 20}
$$

(see figure below).

1) a) Show that $\mathrm{LR}=\mathrm{LA}=4 .(2 \mathrm{pts})$
b) Write RA in the form $a \sqrt{2}$ where a is a natural integer to be determined. (1pt)
c) Deduce the nature of triangle LAR. ($3 / 4 \mathrm{pt}$)
2) Let O be the point of [LR] and S be the point of [RA] such that $R O=\frac{2 \sqrt{2}-1}{\sqrt{2}+1}$ and RS $=5 \sqrt{2}-6$.
a) Rationalize the denominator of RO. ($3 / 4 \mathrm{pt}$)
b) Show that the straight lines (SO) and (LA) are parallel. (1pt)
c) Calculate SO then write SO in scientific notation. (1pt)

$3^{\text {rd }}$ exercise: ($4^{1 / 2}$ pts)

In the figure to the right:

- (C) is a circle of center O and radius $O A=O B=x+y$.
- [CA] and [CB] are two tangents to (C) at A and B such that $C A=2 x+y$ and $C B=x+2 y-1$ (x and y are non zero natural integers)
- The perimeter of the quadrilateral CAOB is 14 cm .
- Note: Don't draw the figure.

1) State a relation between CA and CB. Justify. ($1 / 2 \mathrm{pt}$)
2) Consider the system $\left\{\begin{array}{l}x-y=-1 \\ x+y=3\end{array}\right.$

Show that the above system is a modeling or a translation of the given information. ($1^{1 / 2} \mathrm{pts}$)
3) a) Solve the system then deduce the lengths CA, CB, and AO. ($1^{1 / 2} \mathrm{pts}$)
b) Calculate CO. (1pt)

$4^{\text {th }}$ exercise: ($31 / 2 \mathrm{pts}$)

In a rectangle the width y and the length x are proportional to the numbers 3 and 4 (x and y are non zero natural numbers in cm)

1) Show that y is a linear function of x. (1pt)
2) Represent in an orthonormal system the obtained linear function. (1pt)
3) Determine graphically and by calculation the length if the width is $6 \mathrm{~cm} .\left(1 \frac{1}{2} \mathrm{pts}\right)$

$5^{\text {th }}$ exercise: ($91 / 2 \mathrm{pts}$)

Given two fixed parallel straight lines (d) and (d') such that the distance between them is equal to \mathbf{a} (in cm). (C) is a variable circle of center O and tangent to (d) and (d') at A and B respectively. E is a point of (d) such that $\mathrm{OE}=\mathbf{a}$. The tangent to (C) through E cuts (C) at C and (d') at F. (See figure to the right and don't draw the figure).

1) a) Show that the points O, A and B are collinear. ($3 / 4 \mathrm{pt}$)

b) Calculate the radius R of circle (C) in terms of \mathbf{a}. ($1 / 2 \mathrm{pt}$)
c) Can you say that the radius of (C) is proportional to \mathbf{a} ? Justify. ($1 / 2 \mathrm{pt}$)
d) Determine the locus of O as A and B vary. (1pt)
2) a) Show that triangle $A O E$ is semi-equilateral, then deduce AE without using pythagoras' theorem.($1^{1 / 2}$ pts)
b) Determine how many tangents are issued through each point E and F to (C), then prove that triangle EOF is semi-equilateral. (1pt)
c) Show that $E F=\frac{2 a \sqrt{3}}{3}$. $(3 / 4 \mathrm{pt})$
3) Let M be the midpoint of [EF]. Calculate OM. ($1 / 2 \mathrm{pt}$)
4) a) Justify that the quadrilateral BFEA is a right trapezoid, then prove that (OM) and (AE) are parallel. (1pt)
b) Let H be the point of intersection of (AB) and (EF). Show that $\frac{A E}{H E}=\frac{O M}{H M}(1 \mathrm{pt})$
5) Calculate $B \hat{O} F$ and $A \hat{H} E$ then deduce that B is the midpoint of $[\mathrm{OH}]$. (1 pt)
