التجربة الثانية لعام 2013 - 2014	الشهادة المتوسطة		ليسه دي زار	
الرقم :	الإسم :	المدّة : ساعتان	مسابقة في الرياضيات الإنكليزي	
	ا رشادات عامة: - يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة			
		- ميسمع بإستعمال (له كاسبه عير كابه سبرمجه) - يمكن الإجابة على المسائل بالترتيب االذي تريد - يد حيالا دادة دخط مادنج ممدتني		

يرجى الإجابة بخط واضح ومرتب
 العلامة القصوى من 30

1st exercise: (7pts)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and **justify**.

No.	Questions	Answers		
INO.	Questions	Α	В	С
1.	$(D_1) \text{ and } (D_2) \text{ are two straight lines of equations}$ $(D_1) : y = (2 - \sqrt{3})x + 5$ $(D_2) : y = \left(\frac{1}{2 + \sqrt{3}}\right)x - 7 \text{ then:} \qquad (1 \text{ pt})$	(D_1) and (D_2) are parallel	$ig(D_1ig)$ and $ig(D_2ig)$ are perpendicular	(D_1) and (D_2) are neither parallel nor perpendicular
2.	If a straight-line of equation y = ax + b is increasing and cuts the positive y-axis then: (1 pt)	a > 0 and b > 0	a < 0 and b < 0	a < 0 and b > 0
3.	The straight-line(D) passing through the point $A(a; b)$ where $a = \frac{\frac{1}{2} + \frac{10}{4}}{\frac{5}{2} - 2}$ and $b = (2 - \sqrt{3})^2 + \sqrt{48}$ admits: (21/4 pts)	An equation y = x +1	An equation y = x - 1	An equation y = x
4.	If the price of an item is increased by 25% at the beginning of the spring season but it returns to its initial price at the end of this season , then the percentage of decrease will be: (1¼ pts)	25%	20%	80%
5.	If in the adjacent figure: [TA)&[TB] are tangents to $C(O,3cm)\&(EF) (OA)$ then the relation <i>between y and x</i> is: (1½ pts)	$y = \frac{5}{4}x$	$y = -\frac{5}{4}x + 5$	$x = -\frac{4}{5}y + 4$

2nd exercise: (7pts)

1) Consider the system: $\begin{cases} 5x + 2y = 12000 \\ 3x + 6y = 24000 \end{cases}$

Verify that the couple (1000; 3500) is the solution of this system. (1¹/₂ pts)

2) A craftsman fabricates **black pearls** and **golden pearls**. **Bag B**₁ containing **10 black pearls** and **4 golden pearls** is sold for 24000L.P. **Bag B**₂ containing **3 black pearls** and **6 golden pearls** is sold for 24000L.L.

Bag B_1

- a) Reproduce and complete each of the given spaces ——
- in the adjacent diagrams with the suitable information. (1½ pts) b) Translate the given by 2 equations with 2 unknowns.

and calculate the **price of one black pearl and the price of one golden pearl**. (2pts)

3) Nada wants to buy a bag containing 12 pearls which costs 24500L.P. How many black and golden pearls are there in the bag? (2pts)

3rd exercise: (9pts)

In an orthonormal system of axes (x'Ox; y'Oy), consider the points: A(1;3), B(5;1), C(-1;1), D(-1;4)

and the straight line (d):
$$\mathbf{y} = -\frac{1}{2}\mathbf{x} + \frac{7}{2}$$

- 1) a) Place the given points A, B, C and D in the orthonormal system. (1¼ pts)
 b) Prove that (d) passes through the points A & B, then trace (d). (1¼ pts)
 - c) Deduce that the points A, *B* & *D* are collinear. (¾ pt)
- 2) a) Determine the equation of straight line (AC). (34 pt)

b) Verify if the two straight lines (d) & (AC) are perpendicular. (34 pt)

3) Let (Δ) be the median relative to [*AB*] of triangle *ABC*.

a) Calculate the coordinates of \mathbf{M} , the midpoint of segment [*AB*]. (½pt)

b) Verify that the equation of (Δ): $y = \frac{1}{4}x + \frac{5}{4}$. (34 pt)

4) a) Determine the coordinates of the point **R**, the symmetric of point *D* with respect to origin. (¾pt)
b) Determine the equation of straight-line (*n*), perpendicular to (Δ) and passing through **R**. (1pt)

5) Consider the equation (D): mx + (m-2)y + m - 4 = 0, where *m* is a real number.

Determine the value of m in each of the following cases:

- a) (D) passes through the origin. (1/2pt)
- b) (D) is parallel to the abscissa axis. (34 pt)

4th exercise: (7pts)

Consider a circle (C) of center O and diameter AB = 6cm. Let M be a variable point on the tangent (T) to (C) at A. (MO) cuts (C) respectively in E and F (E is between M and O). The parallel through B to (MF) cuts the circle (C) in N and (AE) in S.

- 1) Draw a figure. (1pt)
- 2) Show that E is the midpoint of [AS] and that BS = 6cm. (1pt)
- 3) (SF) cuts [OB] in I.

2/2

a) By using the two triangles OIF and SIB, show that $\frac{IO}{IB} = \frac{1}{2}$. (1pt)

- b) Verify that: IB = 2cm and IO = 1cm. (1 pt)
- 4) Let G be the centroid of triangle SAB.
 - a) Show that $\frac{GO}{GS} = \frac{1}{2}$ and that (IG) is parallel to (BS). (1 ¹/₂ pts)
 - b) Deduce that IG = 2cm then determine the locus of G as M varies on (T). (1¹/₂pts)

