الرقم :	الإسم :	الكدّة : ساعتان	مسابقة في الرياضيات الإنكليزي

$1^{\text {st }}$ exercise: (7pts)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and justify.

No.	Questions	Answers		
		A	B	C
1.	$\left(D_{1}\right)$ and $\left(D_{2}\right)$ are two straight lines of equations $\begin{align*} & \left(D_{1}\right): y=(2-\sqrt{3}) x+5 \\ & \left(D_{2}\right): y=\left(\frac{1}{2+\sqrt{3}}\right) x-7 \text { then: } \tag{1pt} \end{align*}$	$\left(D_{1}\right) \operatorname{and}\left(D_{2}\right)$ are parallel	$\begin{gathered} \left(D_{1}\right) \text { and }\left(D_{2}\right) \\ \text { are } \\ \text { perpendicular } \end{gathered}$	$\begin{aligned} & \left(D_{1}\right) \text { and }\left(D_{2}\right) \\ & \text { are neither } \\ & \text { parallel nor } \\ & \text { perpendicular } \end{aligned}$
2.	If a straight-line of equation $y=a x+b$ is increasing and cuts the positive y-axis then:	$\mathrm{a}>0$ and $\mathrm{b}>0$	$\mathrm{a}<0$ and $\mathrm{b}<0$	$\mathrm{a}<0$ and $\mathrm{b}>0$
3.	The straight-line(D) passing through the point $A(\boldsymbol{a} ; \boldsymbol{b})$ where $\boldsymbol{a}=\frac{\frac{1}{2}+\frac{10}{4}}{\frac{5}{2}-2}$ and $b=(2-\sqrt{3})^{2}+\sqrt{48} \text { admits: }$	An equation $y=x+1$	An equation $y=x-1$	An equation $y=x$
4.	If the price of an item is increased by 25% at the beginning of the spring season but it returns to its initial price at the end of this season, then the percentage of decrease will be: $(11 / 4 \mathrm{pts})$	25\%	20\%	80\%
5.		$y=\frac{5}{4} x$	$y=-\frac{5}{4} x+5$	$x=-\frac{4}{5} y+4$

1) Consider the system: $\left\{\begin{array}{l}5 x+2 y=12000 \\ 3 x+6 y=24000\end{array}\right.$

Verify that the couple ($1000 ; 3500$) is the solution of this system. ($1 \frac{1}{2} \mathrm{pts}$)
2) A craftsman fabricates black pearls and golden pearls. Bag B_{1} containing 10 black pearls and 4 golden pearls is sold for 24000L.P. Bag B2 containing 3 black pearls and 6 golden pearls is sold for 24000L.L.
a) Reproduce and complete each of the given spaces in the adjacent diagrams with the suitable information. ($1 \frac{1}{2} \mathrm{pts}$)

Bag B_{1}

Bag B_{2}
b) Translate the given by 2 equations with 2 unknowns. and calculate the price of one black pearl and the price of one golden pearl. (2pts)
3) Nada wants to buy a bag containing 12 pearls which costs 24500 L .P. How many black and golden pearls are there in the bag? (2pts)

$3^{\text {rd }}$ exercise: (9 pts)

In an orthonormal system of axes ($\left.\boldsymbol{x}^{\prime} \boldsymbol{O} \boldsymbol{x} ; \boldsymbol{y}^{\prime} \boldsymbol{O} \boldsymbol{y}\right)$, consider the points: $A(1 ; 3), B(5 ; 1), C(-1 ; 1), D(-1 ; 4)$
and the straight line $(d): y=-\frac{1}{2} x+\frac{7}{2}$

1) a) Place the given points A, B, C and D in the orthonormal system. ($11 / 4 \mathrm{pts}$)
b) Prove that (d) passes through the points $A \& B$, then trace (d). ($11 / 4 \mathrm{pts}$)
c) Deduce that the points A, $B \& D$ are collinear. $(3 / 4 \mathrm{pt})$
2) a) Determine the equation of straight line $(A C)$. $(3 / 4 \mathrm{pt})$
b) Verify if the two straight lines $(d) \&(A C)$ are perpendicular. ($3 / 4 \mathrm{pt}$)
3) Let (Δ) be the median relative to $[A B]$ of triangle $A B C$.
a) Calculate the coordinates of M , the midpoint of segment $[A B]$. $(1 / 2 \mathrm{pt})$
b) Verify that the equation of $(\Delta): y=\frac{1}{4} x+\frac{5}{4} \cdot(3 / 4 \mathrm{pt})$
4) a) Determine the coordinates of the point R, the symmetric of point D with respect to origin. $(3 / 4 \mathrm{pt})$
b) Determine the equation of straight-line (n), perpendicular to (Δ) and passing through \mathbf{R}. (1 pt)
5) Consider the equation $(D): m x+(m-2) y+m-4=0$, where m is a real number.

Determine the value of m in each of the following cases:
a) (D) passes through the origin. $(1 / 2 \mathrm{pt})$
b) (D) is parallel to the abscissa axis. $(3 / 4 \mathrm{pt})$

$4^{\text {th }}$ exercise: (7 pts)

Consider a circle (C) of center O and diameter $A B=6 \mathrm{~cm}$. Let M be a variable point on the tangent (T) to (C) at A. (MO) cuts (C) respectively in E and F (E is between M and O). The parallel through B to (MF) cuts the circle (C) in N and (AE) in S .

1) Draw a figure. (1pt)
2) Show that E is the midpoint of $[\mathrm{AS}]$ and that $\mathrm{BS}=6 \mathrm{~cm}$. (1pt)
3) (SF) cuts $[\mathrm{OB}]$ in I.
a) By using the two triangles OIF and SIB, show that $\frac{I O}{I B}=\frac{1}{2}$. (1 pt)
b) Verify that: $\mathrm{IB}=2 \mathrm{~cm}$ and $\mathrm{IO}=1 \mathrm{~cm}$. $(1 \mathrm{pt})$
4) Let G be the centroid of triangle $S A B$.
a) Show that $\frac{G O}{G S}=\frac{1}{2}$ and that (IG) is parallel to (BS). ($1 \frac{1 / 2}{2} \mathrm{pts}$)
b) Deduce that $\mathrm{IG}=2 \mathrm{~cm}$ then determine the locus of G as M varies on (T). $\left(1 \frac{1}{2} \mathrm{ppts}\right)$
