مسابقة في الرياضيات الإنكليزي

$1^{\text {st }}$ exercise: (7 pts)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and justify.

№	Questions	Answers		
		a	b	c
1.	The two straight lines (d) and (D) of respective equations: $y=\left(\frac{\frac{3}{7}-\frac{1}{8}}{\frac{1}{8}-\frac{3}{7}}+3\right) x+2$ and $x=\frac{1}{2} y-1$ are \qquad (11/2pts)	Parallel	Perpendicular	Confounded
2.	In the figure below, we have: * ABC is a right triangle at A. * PNMA is a rectangle. ${ }^{*} A M=x \mathrm{~cm} ;(x>0)$ $\begin{aligned} & * A C=\sqrt{6-2 \sqrt{5}} \times \sqrt{6+2 \sqrt{5}}-\sqrt{(2-\sqrt{3})^{2}}-\sqrt{3} \\ & { }^{*} A B=(1-\sqrt{2})^{2}+\sqrt{8} \mathrm{~cm} \end{aligned}$ Then $A P=\ldots$ ($2^{1 ⁄ 2}$ pts)	$\frac{3}{2} x$	$3-1.5 x$	$\frac{6}{x}$
3.	If $\left\{\begin{array}{l}3 \sqrt{x}-2 \sqrt{y}=4 \\ 3 \sqrt{x}+2 \sqrt{y}=8\end{array}\right.$ then $\sqrt{x^{3}-60 y^{3}}$ is ... ($11 / 2 \mathrm{pts}$)	2	1	0
4.	In a store, the price of an electrical gadget is reduced by 20% during the season of holidays, then after this period the price has been raised by 25%, then..... (11⁄2pts)	Then the final price is less than the initial price	Then the final price is greater than the initial price	Then the final price is equal the initial price

$2^{\text {nd }}$ exercise: ($61 / 4 \mathrm{pts}$)
In the following figure, we have:

* (BC) is parallel to (DE).
* $\mathrm{AE}=3 \mathrm{~cm}$ and $\mathrm{EC}=6 \mathrm{~cm}$.
* $\mathrm{DE}=\boldsymbol{x}+2 \boldsymbol{y}-2$ and $\mathrm{BC}=2 \boldsymbol{x}+3 \boldsymbol{y}-6$
(x and y are two real numbers for which DE and BC exist) NOTE: DO NOT DRAW THE FIGURE.

1) Show that: $\boldsymbol{y}=-\frac{1}{3} x$. ($1 \frac{1}{2}$ pts)

2) Let \boldsymbol{g} be a function such that $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{y}$.
a) What is the nature of g ? Justify. $(1 / 2 p t)$
b) What is the sense of variation of g ? Justify. ($1 / 2 \mathrm{pt}$)
c) Represent \boldsymbol{g}, graphically by a straight line (d), in an orthonormal system of axes (x'Ox, y'Oy). ($3 / 4 \mathrm{pt}$)
d) f is a decreasing affine function of representative straight line (d'). How would you choose the director coefficient of f so that (d^{\prime}) is closer to the ordinate axis than (d). (1pt)
3) Calculate the perimeter of DECB, when the two conditions below are satisfied:

* (d) passes through a point of abscissa $\boldsymbol{x}=9$.
* The perimeter of ADE equals to 6 cm . (2pts)

$3^{\text {rd }}$ exercise: ($101 / 4 \mathrm{pts}$)

In an orthonormal system $(\boldsymbol{x} \cdot \boldsymbol{O} \boldsymbol{x}, \boldsymbol{y} \cdot \boldsymbol{O} \boldsymbol{y})(1 \mathrm{unit}=1 \mathrm{~cm})$, given the points $A\left(\frac{\boldsymbol{m}}{2} ; \boldsymbol{n}\right), B(-1-\boldsymbol{m} ; 4-\boldsymbol{n})$, $C(4 ;-3)$ and $D(2 ;-6) .(\mathrm{d})$ is the straight line of equation $\frac{1}{2} y+2 x-2=-1$.

1) a) Show that the reduced form of the equation of (d) is $y=-4 x+2$. $(1 / 2 \mathrm{pt})$
b) Deduce the coordinates of I and J, the intersection points between (d) and the axes of system: $\boldsymbol{x} \cdot \boldsymbol{O} \boldsymbol{x}$ and \boldsymbol{y} ' $\boldsymbol{O} \boldsymbol{y}$ respectively. (1pt)
c) Verify, by calculation, that the point D belongs to (d). ($1 / 2 \mathrm{pt}$)
d) Draw (d) in the orthonormal system of axes. ($1 / 2 \mathrm{pt}$)
2) Let P be the symmetric of D with respect to the ordinate axis y ' $\mathrm{O} y$ and Q the symmetric of P with respect to $x^{\prime} \mathrm{Ox}$.
a) Determine the coordinates of the two points P and Q . (1 pt)
b) Determine the slope of the straight line (PQ) and deduce its equation. (1pt)
$3)(\Delta)$ is the straight line of equation $\boldsymbol{y}=\boldsymbol{x}+3$.
a) Show that if (Δ) passes through A and B then m and n verify the system: $\left\{\begin{array}{l}2 \boldsymbol{n}-\boldsymbol{m}=6 \\ n-m=2\end{array}\right.$. $(3 / 4 \mathrm{pt})$
b) Deduce then the coordinates of A and B when they belong to (Δ) and then plot them. ($11 / 4 \mathrm{pts}$)

In what follows, suppose that. $\boldsymbol{m}=2, \boldsymbol{n}=4$ and $\mathrm{CA}=\sqrt{58}$.
4) a) Show that $B C=\sqrt{58} .(1 / 2 \mathrm{pt})$
b) Let K be the midpoint of $[\mathrm{AB}]$ and let (C) be the circle circumscribed about the triangle $K B C$. Determine the coordinates of S , the center of (C), and calculate its radius. ($11 / 4 \mathrm{pts}$)
c) Precise the position of the point $F(0 ;-0.5)$ with respect to the circle (C). (Interior or exterior to (C)) ($3 / 4 \mathrm{pt}$)

6) Find the equation of the tangent (T) to the circle (C) at B. ($1 \frac{1}{4} \mathrm{pts}$)
$4^{\text {th }}$ exercise: ($61 / 2 \mathrm{pts}$)
(S) is the circle of center O and of diameter $[A B]$ such that $A B=6 \mathrm{~cm}$. Let M be the midpoint of $[O B]$ and C be a point on (S) such that $B C=3.6 \mathrm{~cm}$.

1) Draw a neat and clear figure that will be completed progressively. ($3 / 4 \mathrm{pt}$)
2) Determine the nature of the triangle $A B C$, and then deduce that $A C=4.8 \mathrm{~cm}$. ($1 \frac{1}{4} \mathrm{pts}$)
$3)>$ The straight line parallel to $(A C)$ through O and the tangent to (S) at C intersect at D. $>(O D)$ cuts $(B C)$ at R.
a) Show that $[O R)$ is the bisector of $C \hat{O} B .(1 \mathrm{pt})$
b) Prove that the triangles $C O D$ and $O B D$ are congruent. $(3 / 4 \mathrm{pt})$
c) Deduce that $(B D)$ is tangent to (S) at \boldsymbol{B}. $(3 / 4 \mathrm{pt})$
d) Verify that the points O, C, D and B belong to the same circle whose diameter is to be determined. (1pt)
3) Suppose in this part that the point C varies on the circle (S). Designate by G the centroid of the triangle ABC . Determine the line on which the variable point G varies as C describes the circle (S). (1 pt)
