$1^{\text {st }}$ exercise: ($2^{1 / 2} \mathrm{pts}$)

1. Consider the following polynomials:

$$
\begin{aligned}
& A(x)=(2 x-1)^{2}-(3 x+4)(6 x-3)+20 x^{2}-5 \\
& B(x)=144 x^{2}+120 x+25
\end{aligned}
$$

a. Factorize $\mathrm{A}(\mathrm{x})$
b. Solve the equation $B(x)=24 A(x)$
2. Given $F(x)=(3 x+2)^{2}-(3 x-2)^{2}$
a. Expand $F(x)$
b. Deduce the value of $(30002)^{2}-(29998)^{2}$ show all work (without the use of the calculator)

$\mathbf{2}^{\text {nd }}$ exercise: (2pts)

Given :

$$
A=\sqrt{\frac{5+2 \sqrt{5}}{5-2 \sqrt{5}}} \quad ; \quad B=\sqrt{6} \sqrt{1-\frac{\sqrt{5}}{3}} \quad ; \quad C=(\sqrt{5}-1)^{2}
$$

a. Verify that $\mathrm{B}^{2}=\mathrm{C}$
b. Expand $(2+\sqrt{5})^{2}$
c. Write A in a form which contain one radical
d. Use the preceding result to prove that $\mathrm{A}-\mathrm{B}$ is a natural number

3 ${ }^{\text {rd }}$ exercise: ($2^{1 / 2} \mathrm{pts}$)

$A B C D$ is a rectangle, M is a point on $[A B]$ such that $A M=x$. where x is a real number such that $0<x<4$. E is a point on $(A D)$ such that $A E=5 \mathrm{~cm}$.

1. Calculate the area of triangle BMC interns of x.
2. Calculate the area of the trapezoid AMCD interns of x.
3. Calculate x if the area of the trapezoid exceeds the area of the triangle by $x^{2}-2 x-9$
4. In this part suppose that $B C=3$ and $A M=x$.

Find the value of x for E, M and C are collinear.

$4^{\text {th }}$ exercise: (3 pts)

1. Solve the following system

$$
\begin{equation*}
x+y=50 \tag{1}
\end{equation*}
$$

2. To buy a book and a CD. We need $50 \$$, The shop make a discount 20% on the CD and 5% on the book, their price would be $45,25 \$$.

Calculate the price of the CD and the book before discount.
3. The shop sold 32 CD and book for $639 \$$ after discount, calculate the number of CDs and the number of books that were sold.

$5^{\text {th }}$ exercise: (5pts)

A. Consider a circle $C(0 ; 6),[A B]$ is a diameter of (C). Let P be a point on the circle such that $B P=9,6 \mathrm{~cm}$, and N be a point on $[\mathrm{OB}]$ such that $\mathrm{BN}=4 \mathrm{~cm}$, Let M be the feet of the perpendicular drawn form N to (BP).

1. Draw the figure
2. Calculate AP, MP and MN
3. Let E be the mid point of $[\mathrm{BN}]$. Prove that (ME) is parallel to (PO)
B. (PO) cut (C) in K and (PN) cut (BK) in I.
a. Find the ratio $\frac{B N}{B O}$ then deduce that what does N represent with respect to triangle PBK.
b. Prove that I is the midpoint of $[\mathrm{BK}]$.
c. Suppose in this part P varies on the circle while N is fixed. Find the locus of M .

$6^{\text {th }}$ exercise: (5pts)

1. In an orthonormal system of axis x'oy and y'oy, plot the points $A(2 ; 1) ; B(-1 ; 4)$ and $C(4 ; 3)$
2. Find the equation of $(A B)$ and $(A C)$. Then deduce that triangle $A B C$ is right at A.
3. Find the equation of (u) perpendicular (AC) and passing through I the midpoint of [AC]
4. Verify by calculation that (u) cuts [BC] in its midpoint E.
5. Let (D) : $y=x+2$,

Show that E belong (D)
Plot (D) and deduce that (D) parallel (AC)
6. Prove geometrically that: $\frac{B F}{B A}=\frac{C I}{C A}$

