1cm

(c)

الرقم:

الإسم:

المدّة: ساعتان

مسابقة في الرياضيات الانكليزي

ارشادات عامة: – يسمح باستخدام آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

يستطيع المرشح الاجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الواردة في المسابقة.

عدد المسائل 5 وجميعها إلزامية.

- على الطالب الإجابة بخط واضح ومفهوم.

- العلامة القصوى 30.

## Exercise 1: (4pts)

Answer by **True** or **False** with **justification** and **correct** the false statements:

1. The equation of the line (D), passing through the points A(2;1) and B(-1;2), is: y = -2x + 5. (1pt)

2. Given that 
$$a = \sqrt{(3 - \sqrt{3})^2}$$
 and  $b = \sqrt{(1 - \sqrt{3})^2}$ , then  $\frac{a}{b} = \sqrt{3}$ .(1pt)

3. If 
$$A = 15.\overline{45} + \frac{1}{3}$$
, then  $A = \frac{4735}{103}$ . (1pt)

4. The price of an object that costs 1500L.L is increased by 15%, then the new price of the object is 1700L.L.(1pt)

## Exercise 2: (4pts)

The adjacent figure represents a rectangle ABCD, a semi - circle (**c**) of radius **r** and a right triangle ADF.

**Given:** The area of (c) is  $A = 4\pi cm^2$ ,  $FD = 2(\sqrt{2} - 1) cm$  and BE = 1 cm.



c. Show that AF = 
$$3\sqrt{5}$$
 cm (1pt)

d. Let the perimeter of rectangle ABCD be  $\frac{8}{\sqrt{2}-1}$ , prove that its width AB is an integer. (1 ½ pts)



## Exercise 3: (8pts)

#### Part A:

- 1. Consider the two polynomials:  $P(x) = (x + a)^2 + bx^2$  and  $Q(x) = -3x^2 + 2x + 1$ . Find a and b so that P(x) and Q(x) are identical. (1pt)
- 2. Suppose that a = 1 and b = -4
  - a. Factorize P(x). (1pt)
  - b. Solve the equation P(x) = 0. (1pt)

### Part B:

ABCD is a rectangle, where AB = 12cm and AD = 7cm.

DEFG and CIJK are two squares of respective sides (x+1) and  $x\sqrt{2}$ , such that 0 < x < 6.



$$A(x) = 84 - (x+1)^2 + 2x^2$$
. (1pt)

b. Develop and reduce A(x). (1pt)



b. Deduce the value of x if the area of the shaded region is  $98cm^2$ . (1pt)

3) Find the value of x such that the area of DEFG is double the area of CIJK. (1pt)



## Exercise 4: (7pts)

Consider in the orthonormal system of axes  $(x'Ox \ and \ y'Oy)$  the lines:

$$\left(d_{1}\right)\colon y=\frac{2x+3}{2}$$

$$(d_2): 3x = 9$$

; 
$$(d_2): 3x = 9$$
 ;  $(d_3): 2y = -4$ .

1. Recopy and complete the following table: (2pts)

| <u>r,</u> |        |                  |                                            |                          |
|-----------|--------|------------------|--------------------------------------------|--------------------------|
| Lines     | Slopes | Parallel to y'Oy | Neither parallel nor perpendicular to y'Oy | Perpendicular to<br>y'Oy |
| $(d_1)$   |        |                  |                                            |                          |
| $(d_2)$   |        |                  |                                            |                          |
| $(d_3)$   |        |                  |                                            |                          |

- 2. Trace the given lines and then determine the coordinates of:
  - a. Point A the point of intersection of  $(d_2) & (d_3) \cdot (0.75 \text{pt})$
  - b. Point B the point of intersection of  $(d_1) & (d_2) \cdot (0.75 \text{pt})$
  - c. Point C the point of intersection of  $(d_1)&(d_3)$ . (0.75pt)
- 3. Determine the equation of the line (OA). Are the lines (OA) and  $(d_1)$  perpendicular? Justify. (0.75pt)
- 4. Determine the center and radius of the circle circumscribed about triangle ABC.(0.5pt)
- 5. Consider the point  $K(-\frac{9}{10};a)$ .
  - a. Find a so that the point K belongs to the line  $(d_1)$ .(0.75pt)
  - b. Deduce that the lines  $(d_1)$  and (OA) intersect at point K. (0.75pt)

# Exercise 5: (7pts)

In the opposite figure:

- (C) is a circle of center O and diameter AB
- OA = OB = 3cm
- P is a point of AB such that OP = 5cm
- E is a point of (C) such that PE = 4cm
- (D) is the tangent at A to (C)
- M is a variable point on (D)
- (PE) cuts (D) in J.
- 1) Reproduce this figure. (1pt)
- 2) a- Prove that (PE) is tangent to (C) at E. (1pt)
  - b- Deduce that JE = JA. (1pt)
- 3) Suppose that JE = JA = x and JP = x + 4 where x is a measure of length in centimeters.
  - a- Apply Pythagoras theorem in triangle APJ, and then find the value of x. (1pt)
  - b- Deduce that triangle ABJ is a right isosceles triangle. (1pt)
- 4) (JB) cuts (C) in a second point F. Prove that F is the midpoint of [JB] and that (FO) is the perpendicular bisector of [AB]. (1pt)
- 5) Let N be the midpoint of |MB|.

Find the locus of N as M varies on (D). (1pt)

