التجربة الثالثة لعام 2012 - 2013		الشهادة المتوسطة	ليسه دي زار	
الرقم :	الإسم :	المدّة : ساعتين	مسابقة في الرياضيات الانكليزي	
			إ رشادات عامة:	

- يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة
- يمكن الإجابة على المسائل بالترتيب الذي تريد
 - يرجى الإجابة بخط واضح ومرتب
 - العلامة القصوي من 30
 - عدد المسائل: 6

1st exercise: (7 pts)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and **justify**.

No	Questions	Answers		
INO.	Questions	Α	В	С
1.	The measure of the acute angle that straight-line			
	(d) of equation $y = \sqrt{3}x + 2$ makes with y'oy is	60 [°]	30^{o}	45^{o}
	equal to			
2.	The integers that are solutions of the following			
	system $\begin{cases} \frac{3x+1}{3} - \frac{x-1}{2} < 2x - 1 \end{cases}$	1, 2, 3	2, 3	2, 3, 4
	$\left(3\left(x-1\right)+2\leq 2x+3\right)$			
3.	In the two sections A and B of grade 9, you are			
	given:			
	Section A: 20 students, average of marks is 15	12.5	10	11
	Section B: 30 students average of marks is 10	12.5	12	11
	The average of marks of the 50 students is equal			
	to:			
4.	Given $A = \frac{2 \times (Cos60^{\circ} + Sin45^{\circ})}{\tan 60^{\circ}} \times (\sqrt{6} - \sqrt{3})$	tan 45°	$\sqrt{3}$	<u>1</u>
	without using the calculator and showing all the		2	2
	details of calculations then A =			
5.	Given in an orthonormal system the straight-line			
	(d) of equation $y = \frac{4}{3}x + 4$. The equation of (d'),	$y = \frac{4}{2}x - 4$	$y = \frac{4}{3}x$	y = 4x
	the image of (d) by the translation of vector	- 3	´ 3	
	$\vec{v}(3,-4)$ is			

2nd exercise: (3½ pts)

In the adjacent figure , consider a semi-circle (C) of diameter [DC] and a rectangle ABCD. M is a point of (C) such that $DM = \pi$. MC = 1 AB w and

M is a point of (C) such that $DM = \pi$, MC = 1, AB = x and BC = x - 2. (x > 2) (The unit of length is the cm).

- 1) Determine the area A of the rectangle ABCD in terms of x.(½ pt)
- 2) Show that the area A' of the shaded region can be expressed by

A' =
$$\frac{\pi}{2} \left(\frac{x^2}{4} - 1 \right)$$
.(1½ pts)

- 3) a) Verify the following equality: $3x^2 8x + 4 = (x 2)(3x 2).(42 \text{ pt})$
 - b) Can you calculate the value of x so that the area of the shaded region A ' is equal to $\frac{\pi}{2} \times A$? Justify.

x-2

х

(1 pt)

3rd exercise: (4 pts)

In a factory A, the monthly salary of a secretary is 1000\$, that of a technician is 1500\$ and that of a director is 2000\$.

Factory A:

Salary in \$	1000	1500	2000	Total
Frequency	3			10
Central angles		180 [°]		

- 1) Copy the table and complete it by showing all the details of calculation. (1¹/₂ pts)
- 2) Determine the population, the character, the values and the nature of the character. (1 pt)
- 3) In another <u>factory B</u>, the secretary gets a salary reduced by 20% than that of a secretary in the <u>factory A</u> while the technicians get the same salary.

Consider the	following	table of free	quency in	factory B.
			1	

Salary in \$	x	1500	у
Frequency	8	9	3

Calculate **x** and **y** knowing that the **mean salary in factory B** is 1340\$ and that the number of directors is 3. (1½ pts)

4th exercise: (6½ pts)

In an orthonormal system (x'ox, y'oy), consider the points A(-2; 5), B(5; 3), C(**a**; **2a** +**3**), E(1; 1) and the straight-line (D_1) of equation 2y = 3x.

- 1) Plot the points A, B, E and draw (D_1) .(1½ pts)
- 2) Calculate **a** so that the point C belongs to the median issued from A in the triangle ABE. (1¹/₂ pts)
- 3) Calculate **m** and **n** so that the straight-line (d) of equation (m 2)x + (2n 3)y + 15 = 0 passes through the point A and be perpendicular to $(\delta): y = 2x 5$. (1½ pts)
- 4) Let H be the point defined by $\vec{EA} + \vec{EB} = \vec{EH}$.
 - a) Determine the nature of the quadrilateral EBHA. (½ pt)
 - b) Calculate the coordinates of H. (1 pt)
 - c) Complete: H is the translate of B by the translation of vector ... because = (½ pt)

5th exercise: (3 pts)

Tarek wants to install at home a basket of basketball. He should fix it to 3.05m of the ground .The ladder that he uses measures 3.20m.

- Calculate the acute angle formed by the ladder and the ground. (Give the answer rounded to the nearest degree.(1pt)
- If the ladder slides on the wall until it is flat on the ground, then determine the locus of the midpoint I of the ladder(1pt).
- 3) Without calculating BC, use complementary angles to calculate $\cos \stackrel{\wedge}{BAC}$ then deduce an approximate value for $\stackrel{\wedge}{BAC}$ to the nearest 0.01 by excess .(1 pt)

6th exercise: (6 pts)

(C) is a circle of center O and diameter [AB].

The straight-line (d) is tangent to (C) at B and M is a variable point of (d). The perpendicular to (AM) passing through A cuts (d) at N.

- 1) Draw a figure. (½ pt)
- 2) a) Show that $\stackrel{\wedge}{BAN} = \stackrel{\wedge}{AMB}$.(34 pt)

b) Using $\tan BAN$ and $\tan AMB$ in two convenient right triangles, show that $BM \times BN = 4R^2$. (1 pt)

- 3) The parallel to (AN) through O cuts (BN) at F and (AM) at E. Show that F is the midpoint of [BN].(¾pt)
- 4) (AM) cuts the circle (C) at I.
 - a) Show that the quadrilateral AIBN is a right trapezoid. (¾ pt)
 - b) Show that the two triangles AIB and FOB are similar then write the ratio of similarity. (1¼ pts)
- 5) Show that the quadrilateral AEBF is inscribed in a circle whose center S and radius are to be precised.(1pt)