| مسابقة في الرياضيات الإنكليزي |
| :--- | :--- | :--- | :--- |

إرشادات عامة:

$1^{\text {st }}$ exercise: ($61 / 2 \mathrm{pts}$)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and justify.

$\mathbf{2 d}^{\text {nd }}$ exercise: ($51 / 2 \mathrm{pts}$)

1) α is the measure of an acute angle such that $\cos (\alpha)=m$.

Justify which of the following propositions below is correct about m :
a) $m=\frac{4 \sqrt{2}}{9}$
b) $m=-\frac{4 \sqrt{2}}{9}$
c) $m=\frac{9}{4 \sqrt{2}}$
2) Deduce the numerical values of $\sin (\alpha)$ and $\tan (\alpha) \cdot\left(1^{1 / 2} \mathrm{pts}\right)$
3) If (d) is a decreasing straight-line in an orthonormal system ($\boldsymbol{x} \boldsymbol{O} \boldsymbol{x} ; \boldsymbol{y} \boldsymbol{O} \boldsymbol{y}$) passing through the point $D(-1 ; 4)$ and making an acute angle α with the x-axis , then determine the equation of (d). ($1 \mathrm{pt)}$
4) Without using the calculator, show that: $A=\frac{2\left(\cos 60^{\circ}+\sin 45^{\circ}\right)}{\tan 68^{\circ} \times \tan 22^{\circ}} \times(\sqrt{6}-\sqrt{3})$ and $B=\frac{\sqrt{3}}{3}$ are reciprocals.(2pts)

$3^{\text {rd }}$ exercise: ($3^{1 ⁄ 2} \mathrm{pts}$)

Upon studying the expenses of a family that spends 1750000 L.L monthly, the following results were obtained:
30% for food, 10% for transportation, 20% for housing, 8% for clothing, 11% for energy, 15% for schooling, and 6% for entertainment.

1) Determine the population, the character, the modalities and the nature of the character. (1pt)
2) Make a table of frequencies and represent this data in a bar diagram of frequencies in (\%). ($11 / 2 \mathrm{pts}$)
3) Can you determine the increasing cumulative frequencies of this statistical distribution? Justify. (1pt)

$4^{\text {th }}$ exercise: (9 pts)

In an orthonormal system of axes ($\boldsymbol{x} \boldsymbol{\prime} \boldsymbol{O} \boldsymbol{x} ; \boldsymbol{y} \boldsymbol{O} \boldsymbol{y})$, consider the points: $A(1 ; 3), \mathrm{B}(4 ;-1)$ and $\mathrm{D}(5 ; 6)$.

1) a) Place the given points A, B and D in the orthonormal system. (1 pt)
b) Determine graphically the coordinates of $\overrightarrow{A D}$ (leave the traces on your figure), then calculate the coordinates of the point C such that $A B C D$ is a parallelogram. ($11 / 4 \mathrm{pts}$)
c) Given that $C(8 ; 2)$, then show, by calculation, that (BD) and (AC) are perpendicular. ($3 / 4 \mathrm{pt}$)
d) Show that ABCD is a square. $(1 \mathrm{pt})$
2) Consider the two circles $\Omega(A ; 2)$ and $\delta(\mathrm{B} ; 3)$ that intersect at the point E .
a) Draw the two circles (Ω) and (δ) and the point E. $(1 / 2 \mathrm{pt})$
b) Show that the two circles (Ω) and (δ) are tangent externally at E. (1pt)
3) Given the straight-line (Δ) of equation $4 y+5 x+7=0$.
a) Which axis does the straight-line (Δ) cut: the positive or the negative y-axis? Justify. ($1 / 2 \mathrm{pt}$)
b) Determine the equation of the straight-line (Ψ) that is parallel to (Δ) and passes through B. $(3 / 4 \mathrm{pt})$
c) Give only a plan made of 3 steps to how you can calculate the distance between the two parallel straight -lines (Δ) and $(\Psi) .(3 / 4 \mathrm{pt})$
4) Suppose that G is a variable point that describes the circle $\Omega(A ; 2)$ and H is the image of G by the translation of vector $\overrightarrow{A B}+\overrightarrow{\mathrm{AD}}$. Show that the point H varies on a circle whose center and radius are to be determined. ($1^{11 / 2} \mathrm{pts}$)

$5^{\text {th }}$ exercise: ($51 / 2 \mathrm{pts}$)

Consider in the figure to the right:

- (C) is a circle of center O and radius $r=\frac{a \sqrt{2}}{2}$ where $a>0$.
- $[\mathrm{AC}]$ and $[\mathrm{BD}]$ are two perpendicular diameters of (C).
- K is a point on (BC) such that $C K=b, b>0$.
- The perpendicular passing through A to (AK) cuts (CD) in L.
- [LC] and [AK] intersect at P.

1) a) What is the nature of the quadrilateral ABCD ? $(3 / 4 \mathrm{pt})$

b) Prove that the triangle ADO is right isosceles then use trigonometry to prove that $\mathrm{AD}=\mathrm{a} .\left(1 \frac{1}{2} \mathrm{pts}\right)$
2) Show that the points A, L, C and K belong to the same circle (Ω) whose center S is to be determined. ($3 / 4 \mathrm{pt}$)
3) Use the property of Thales in the two triangles ADP and CPK to prove that $P D=\frac{a^{2}}{a+b}(1 \mathrm{pt})$
4) a) Show that the two triangles ALD and ADP are similar then write the ratio of similitude. (1pt)
b) Deduce that $\mathrm{LD}=a+b$. $(1 / 2 \mathrm{pt})$
