الرقم :	الإسم :	المدّة : ساعتان	مسابقة في الرياضيات الانكليزي	
				إرشادات
			يسمح بإبتعمال آلة حاسبة غير قابلة لللبرمج.	-
				-
			يرجى الإجابة بخط واضح ومرتب.	-
			العلامة القصوى من 30	-

$1^{\text {st }}$ exercise: ($51 / 4 \mathrm{pts}$)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and justify.

No.	Questions	Answers		
		A	B	C
1.	If α is an acute angle such that $\sin \alpha=\frac{2-\sqrt{3}}{3}$, then $\cos \alpha=$ \qquad	$\frac{\sqrt{2+4 \sqrt{3}}}{3}$	$\frac{2 \sqrt{2}}{3}$	$\frac{\sqrt{2-4 \sqrt{3}}}{3}$
2.	If in an orthonormal system of axes the point $M(m-1, n+2)$ belongs to the straight line $(D): y=3 x-11$, which makes an acute angle α with the positive x-axis such that $\tan \alpha=m+2 n$, then....... (1 pt)	$\begin{gathered} m=1 \\ \& \\ n=-5 \end{gathered}$	$\begin{gathered} m=-5 \\ \& \\ n=-1 \end{gathered}$	$\begin{gathered} m=5 \\ \& \\ n=-1 \end{gathered}$
3.	In triangle $A B C$, consider the points M and N such that $\overrightarrow{A M}=\overrightarrow{B C}$ and $\overrightarrow{A N}=\overrightarrow{A B}+\overrightarrow{A C}$, then. ($1^{11 / 4} \mathrm{pts}$)	M is the midpoint of [BC]	C is the midpoint of [MN]	N is the midpoint of [BC]
4.	If $M(x, y)$ belongs to $(D): 2 y-3 x+4=0$ where $x \& y$ are proportional to $2 \& 5$ respectively, then(1 pt)	$x=-2$ and $y=-5$	$x=2$ and $y=5$	$x=-2$ and $y=5$
5.	The inequality: $\left(x^{2}+1\right)(-x+3)>0$ is satisfied for $x \in \ldots(1 \mathrm{pt})$] $-\infty, 3[$	$] 3, \infty[$	$]-\infty,-3]$

$\underline{2}^{\text {nd }}$ exercise: ($133 / 4 \mathrm{pts}$)

In the orthonormal system of axes $\left(x^{\prime} O x \& y^{\prime} O y\right)$ where the unit of length is $c m$, consider the points $A(3 ; 0), C(3 ; 8), E(-1 ; 0), B(-3 ; 2 n-5)$ and the straight lines $(d): y=2 x+2$ and $(\Delta): 4 y-x=29$
(n is a real parameter)
Part A:

1) Prove that C is the point of intersection of the two straight-lines (d) and $(\Delta) .(1 \mathrm{pt})$
2) Plot the points A, E and C then draw (d) and (Δ). ($11 / 2 \mathrm{pts}$)
3) a. Using the properties of the coordinates, prove that triangle $A C E$ is right. (1 pt)
b. Using the slope of the straight-line $(C E)$, calculate the angles of triangle $A C E .\left(1 \frac{1}{4} \mathrm{pts}\right)$
4) a. Determine graphically the coordinates of $\overrightarrow{C E}$. (Leave the traces on the figure) $(3 / 4 \mathrm{pt})$
b. The straight line $\left(\Delta^{\prime}\right)$ is the image of (Δ) by the translation of vector $\overrightarrow{C E}$. Draw $\left(\Delta^{\prime}\right) \cdot(3 / 4 \mathrm{pt})$
c. Determine the equation of $\left(\Delta^{\prime}\right)$. (1pt)
5) a. On which straight line does the point B vary? Justify. ($3 / 4 \mathrm{pt}$)
b. Calculate the coordinates of each of the vectors: $\overrightarrow{C E}$ and $\overrightarrow{C B}$. (1pt)
c. Using the coordinates of vectors $\overrightarrow{C E}$ and $\overrightarrow{C B}$, calculate the numerical value of n, so that the points C, E and B are collinear.

Part B:

In this part, you are given the orthonormal system that you have drawn in part A (you can solve this part without depending on part A). Consider the point D, intersection point of (d) with the ordinate axis and let P be a variable point on (d) such that C is between P and D.
The perpendicular drawn from P to (d) cuts (Δ) at Q.
(PH) is the height relative to $[\mathrm{DQ}]$ in the right triangle PDQ such that $P D=4 x-16$ and $P Q=3 x-12$, where $x>4$.

1) Place the points D, Q and H on your own figure. $(1 / 2 \mathrm{pt})$
2) Prove that the area of triangle $P D Q$ is $A(x)=6(x-4)^{2} .(1 \mathrm{pt})$
3) Prove that $D Q=5(x-4)$, then deduce that $P H=\frac{12}{5}(x-4) \cdot\left(1^{1 / 1 / 4} \mathrm{pts}\right)$
4) If $A(x)=54$, then calculate the length of $[P D]$. (1 pt)

$3^{\text {rd }}$ exercise: (4 pts)

The following study is made to record the number of supplementary exercises performed by each $9^{\text {th }}$ grade student in math per week. The results are organized in the table below:

Number of supplementary exercises per week	1	2	3	4	6
Number of students	5	y	7	x	3
Increasing cumulative frequency (I.C.F)	5				25

1) Determine the population and the character under study then precise its nature. $(3 / 4 \mathrm{pt})$
2) Determine the number of students in this class. Justify. ($1 / 2 \mathrm{pt}$)
3) Interpret the meaning of x in the above table. ($1 / 2 \mathrm{pt}$)
4) a) Find a relation between x and y. $(1 / 2 p t)$
b) Show that if the average number of extra exercises done by the students is 3.2 , then $x=8$ and $y=2$. (1 pt)
5) Set up the table of increasing cumulative frequency in percentage and interpret any value. ($3 / 4 \mathrm{pt}$) $4^{\text {th }}$ exercise: (7 pts)

- (C) is a semi-circle of center O, radius $R=3 \mathrm{~cm}$ and of diameter [AB].
- C is a point on the semi straight-line [Ox) passing through B exterior to the semi-circle (C) such that $\mathrm{BC}=2 \mathrm{~cm}$.
- The tangent to the semi- circle (C) through the point C cuts (C) in D.
- The perpendicular through A to $[A B]$ cuts (CD) in E.

1) Draw a figure. ($1 / 2 \mathrm{pt}$)
2) Show that the triangles $B C D$ and $A C D$ are similar. (1 pt)
3) The perpendicular to $[\mathrm{AB}]$ through O , cuts (CE) in F.
a. Use $\cos (O \hat{C} D)$ in 2 convenient right triangles to calculate FD . ($1^{1 / 2} \mathrm{pts}$)
b. If $O F=\frac{15}{4} \mathrm{~cm}$, then use Thales' property to calculate EF. $(3 / 4 \mathrm{pt})$

c. Deduce that $[\mathrm{EO})$ is the bisector of the angle $A \hat{E} C$. $(3 / 4 \mathrm{pt})$
4) a. Prove that the triangles OFD \& ACE are similar, and deduce the ratio of similitude. (1 pt)
b. Prove that the ratio of similitude: $k=\frac{D F}{A E}=\frac{3}{8} .(1 / 2 \mathrm{pt})$
5) Determine the locus of the point M , the midpoint of $[\mathrm{OE}]$, as C varies on $[\mathrm{Bx}) .(1 \mathrm{pt})$
