 ² لعام 2014 - 2015	التجربة الثالث	الشهادة المتوسطة		دي زار	ليسه
الرقم :	الإسم :	المدة : ساعتان	ي الرياضيات الانكليزي	مسابقة في	ا بیشرادان
			آلة حاسبة غير قابلة للبرمحة	کمہ۔ یسمح یاستعمال	<u>ہ رسادات</u> -
			لى المسائل بالترتيب االذي تريد.	يمكن الإجابة ع	-
			خط واضح ومرتب.	يرجى الإجابة ب	-
			ى من 30	العلامة القصوي	-

1st exercise: (5¼ pts)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, and **justify**.

No	Ouestiens	Answers			
INO.	Questions	Α	В	C	
1.	If α is an acute angle such that $\sin \alpha = \frac{2 - \sqrt{3}}{3}$, then $\cos \alpha = \dots$ (1 pt)	$\frac{\sqrt{2+4\sqrt{3}}}{3}$	$\frac{2\sqrt{2}}{3}$	$\frac{\sqrt{2-4\sqrt{3}}}{3}$	
	If in an orthonormal system of axes the point $M(m-1, n+2)$	m = 1	m = -5	<i>m</i> = 5	
2.	belongs to the straight line (D): $y = 3x - 11$, which makes an acute	&	&	&	
	then (1 pt)	n = -5	n = -1	n = -1	
3.	In triangle ABC , consider the points M and N such that $\overrightarrow{AM} = \overrightarrow{BC}$ and $\overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{AC}$, then	<i>M</i> is the midpoint of [<i>BC</i>]	C is the midpoint of [MN]	N is the midpoint of $[BC]$	
4.	If $M(x, y)$ belongs to $(D): 2y - 3x + 4 = 0$ where $x & y$ are proportional to $2 & 5$ respectively, then(1 pt)	x = -2 and $y = -5$	x = 2 and $y = 5$	x = -2 and $y = 5$	
5.	The inequality: $(x^2 + 1)(-x + 3) > 0$ is satisfied for $x \in$ (1 pt)]-∞,3[]3,∞[]-∞,-3]	

2nd exercise: (1334 pts)

In the orthonormal system of axes (x'Ox & y'Oy) where the unit of length is *cm*, consider the points

A(3;0), C(3;8), E(-1;0), B(-3;2n-5) and the straight lines (d): y = 2x + 2 and $(\Delta): 4y - x = 29$

(n is a real parameter)

<u>Part A:</u>

- 1) Prove that C is the point of intersection of the two straight-lines (d) and (Δ). (1 pt)
- 2) Plot the points A, E and C then draw (d) and (Δ). (1¹/₂ pts)
- 3) a. Using the properties of the coordinates, prove that triangle ACE is right. (1 pt)
 b. Using the slope of the straight-line (CE) calculate the angles of triangle ACE. (1¼ pts)
- 4) a. Determine graphically the coordinates of CE . (Leave the traces on the figure) ($\frac{3}{4}$ pt)
 - b. The straight line (Δ') is the image of (Δ) by the translation of vector CE. Draw (Δ'). (**34pt**)
 - c. Determine the equation of (Δ') . (1pt)
- 5) a. On which straight line does the point B vary? **Justify. (¾pt)**
 - b. Calculate the coordinates of each of the vectors: \overrightarrow{CE} and \overrightarrow{CB} . (1pt)

c. Using the coordinates of vectors \overrightarrow{CE} and \overrightarrow{CB} , calculate the numerical value of n, so that the points C, E and B are collinear.

Part B:

In this part, you are given the orthonormal system that you have drawn in part A (you can solve this part without depending on part A). Consider the point D, intersection point of (d) with the ordinate axis and let P be a variable point on (d) such that C is between P and D.

The perpendicular drawn from P to (d) cuts (Δ) at Q.

(PH) is the height relative to [DQ] in the right triangle PDQ such that

PD = 4x - 16 and PQ = 3x - 12, where x > 4.

1) Place the points D, Q and H on your own figure. (½ pt)

2) Prove that the area of triangle *PDQ* is $A(x) = 6(x-4)^2$. (1 pt)

3) Prove that
$$DQ = 5(x-4)$$
, then deduce that $PH = \frac{12}{5}(x-4)$. (1¹/₄ pts)

4) If A(x) = 54, then calculate the length of [PD]. (1 pt)

3rd exercise: (4 pts)

The following study is made to record the number of supplementary exercises performed by each 9th grade student in math per week. The results are organized in the table below:

Number of supplementary exercises per week		2	3	4	6
Number of students	5	у	7	x	3
Increasing cumulative frequency (I.C.F)	5				25

1) Determine the population and the character under study then precise its nature. (**%pt**)

2) Determine the number of students in this class. Justify. (½ pt)

3) Interpret the meaning of x in the above table. (½ pt)

4) a) Find a relation between x and y. (1/2 pt)

b) Show that if the average number of extra exercises done by the students is 3.2, then x = 8 and y = 2. (1 pt)

5) Set up the table of increasing cumulative frequency in percentage and interpret any value. (**¾ pt**) <u>4th exercise: (7 pts)</u>

- (C) is a semi-circle of center O, radius R=3 cm and of diameter [AB].
- C is a point on the semi straight-line [Ox) passing through B exterior to the semi-circle (C) such that BC = 2cm.
- The tangent to the semi- circle (C) through the point C cuts (C) in D.
- The perpendicular through A to [AB] cuts (CD) in E.
- 1) Draw a figure. **(½ pt)**
- 2) Show that the triangles *BCD* and *ACD* are similar. (1 pt)
- 3) The perpendicular to [AB] through O, cuts (CE) in F.
 - a. Use $\cos(\hat{OCD})$ in 2 convenient right triangles to calculate FD. (1½ pts) 15

b. If
$$OF = \frac{15}{4} cm$$
, then use Thales' property to calculate EF. (34 pt)

c. Deduce that [EO) is the bisector of the angle $A\hat{E}C$. (34 pt)

4) a. Prove that the triangles OFD & ACE are similar, and deduce the ratio of similitude. (1 pt)

b. Prove that the ratio of similitude: $k = \frac{DF}{AE} = \frac{3}{8}$. (½ pt)

5) Determine the locus of the point M, the midpoint of [OE], as C varies on [Bx). (1 pt)

