الرقم :	الإسم :	المدّة : ساعتان	فباية في الرياضيات الإنكليزي	مسا
		!		
		يسكح بإبتعمال ألة حاسبة غبر قابلة للبرمجة للتأكد من الاجابة فقط		
		يككن الإجابة على ألمسائل بالتّنبّ		
		يرجى الإجابة بخط واضح ومرتب		

$1^{\text {st }}$ exercise: ($71 / 2 \mathrm{pts}$)

The adjacent figure represents the triangle $A B C$ such that:
$\hat{B A C}=75^{\circ}, A \hat{B C}=45^{\circ}$ and $\hat{A C B}=60^{\circ}$.
We suppose that: $a=\cos \hat{\mathrm{A}}, b=\cos \hat{\mathrm{B}}, c=\cos \hat{\mathrm{C}}$ and $\cos \left(75^{\circ}\right)=x$.
We admit that a, b and c verify the relation: $a^{2}+b^{2}+c^{2}+2 a b c=1$.

1) Use the above given relation and the table of particular angles, show that: $4 x^{2}+2 x \sqrt{2}-1=0 .(1 \mathrm{pt})$

2) Consider the real numbers: $U=\frac{\sqrt{6}-\sqrt{2}}{4}$ and $V=\frac{-\sqrt{6}-\sqrt{2}}{4}$.
a) Verify that U and V are two solutions of the equation: $4 x^{2}+2 x \sqrt{2}-1=0 .\left(1 \frac{1}{2}\right.$ pts)
b) Deduce the exact value of $\cos \left(75^{\circ}\right)=x$ and then deduce $\sin \left(75^{\circ}\right)$ and $\sin \left(15^{\circ}\right) .(3 / 4 \mathrm{pt}, 1 \mathrm{pt}, 1 / 2 \mathrm{pt})$
3) a) Compare the numbers: $\frac{\sqrt{6}+\sqrt{2}}{4}$ and $\frac{\sqrt{2+\sqrt{3}}}{2}$.(1pt)
b) Deduce that $\tan \left(75^{\circ}\right)=2+\sqrt{3}$, and then calculate $\cot \left(75^{\circ}\right) .(1 \mathrm{pt}, 3 / 4 \mathrm{pt})$

$2^{\text {nd }}$ exercise: (12 pts)

In an orthonormal system of axes $\left(x^{\prime} O x, y^{\prime} O y\right)$, where the unit is cm , consider the points $\mathrm{A}(0 ; 2), \mathrm{B}(-2 ; 0)$, $\mathrm{C}(4 ;-2)$ and $\mathrm{D}(4 m-2 ; 4 m)$, where m is a real number.
(d) is the straight line of equation: $y=-3 x-8$.

1) a) Place the points A, B, C and draw (d) in the orthonormal system. ($3 / 4 \mathrm{pt}, 1 / 2 \mathrm{pt}$)
b) Show that the straight line (AB) is defined by the equation: $y=x+2$. $(3 / 4 \mathrm{pt})$
2) Let I be the midpoint of $[B C]$.

Calculate AI and BC then deduce that ABC is right at $\mathrm{A} .(13 / 4 \mathrm{pts})$
3) a) Show that as m varies, the point D describes the fixed straight line (AB). $(3 / 4 \mathrm{pt})$
b) Calculate \boldsymbol{m} so that [CA) is the angle bisector of $B \bar{C} D .(1 \mathrm{pt})$
4) Calculate the area of (C), the circle circumscribed about the right triangle ABC. ($3 / 4 \mathrm{pt}$)
5) (d) is tangent to (C) at a point $\mathrm{E}(a ; b)$.
a) Calculate, in terms of a and b, the slope of the straight line (EI).($3 / 4 \mathrm{pt}$)
b) Show that the coordinates of the point E, verify the following system: $\left\{\begin{array}{l}a-3 b=4 \\ 3 a+b=-8\end{array} .\left(1 \frac{1}{2} \mathbf{2 p t s}\right)\right.$
c) Solve the system then deduce the coordinates of E. (1pt)
6) H is the point such that: $\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{CH}}$. In this question take $m=1$.
a) Calculate the coordinates of H and determine the nature of the quadrilateral BCDH.($\left.1 \frac{1}{2} 2 \mathrm{pts}\right)$
b) Determine the coordinates of J , the center of the circle (C^{\prime}), the image of the circle(C) by the translation of vector $\overrightarrow{\mathrm{CA}}$.(1pt)

$3^{\text {rd }}$ exercise: ($61 / 2 \mathrm{pts}$)

In a clothes store, a study was conducted about the types of 20 pieces of clothes. The following table shows the obtained data.

Clothes	Pants	Sweater	T-shirt	Jackets	Total
Frequencies	$2 x-y+4$	$-2 x y+3 y+10$	$x+y-1$	$2 x y-2$	20

Part A :

The adjacent semi-circular diagram gives the distribution of the above modalities.

1) For the above study, precise the population, the statistical unit, the character and its nature. (1pt)
2) a) Explain how the following equations: $x+y=3$ and $2 x+y=5$ were obtained. ($11 / 2 \mathrm{pts}$)

b) Calculate the numerical values of x and $y .(3 / 4 \mathrm{pt})$
3) Construct the bar diagram of frequencies. ($3 / 4 \mathrm{pt}$)

Part B:

Now, we want to study the shoe size of the shoes bought by $\mathbf{8 0}$ customers.
For this, we consider the following incomplete table.

Shoe size	37	38	41	42	Total
Frequency	5		17		
Increasing Cumulative Frequencies in \%		33.75%			

1) a) Interpret the ICF $\%$ of the shoe size 38. ($1 / 4 \mathrm{pt}$)
b) Reproduce the above table and complete the missing numbers. ($11 / 2 \mathrm{pts}$)
2) Calculate the mean shoe size. $(3 / 4 \mathrm{pt})$

$4^{\text {th }}$ exercise: (6 pts)

(S) is a semi-circle of center O and radius " r " where $[\mathrm{AB}]$ is a diameter. Let C be the point on (S) such that $\hat{B C}=2 \hat{A C}$. The perpendicular to (OC) at O cuts (S) at D .

1) a) Show that $A C=60^{\circ}$, then draw the semi-circle(S) and place the point $C .(3 / 4 \mathrm{pt}, 1 / 2 \mathrm{pt})$
b) Calculate the measure of the arc $\hat{B D}$ and show that triangle ABC is semi equilateral $\cdot(3 / 4 \mathrm{pt}, 3 / 4 \mathrm{pt})$
c) Use trigonometric ratios (Sine, cosine or Tangent) to calculate, in terms of r, AD and BD . ($1 \frac{1}{2}$ pts)
2) The straight-lines (BC) and (AD) intersect at I .
a) Show that the triangles ACI and BDI are similar.(1pt)
b) Deduce that: $\mathrm{AC} \times \mathrm{BI}=\mathrm{AI} \times \mathrm{BD} .(3 / 4 \mathrm{pt})$

$5^{\text {th }}$ exercise: ($41 / 4 \mathrm{pts}$)

During the holidays in the Greek islands, a man wants to rent a scooter. The owner offered him the following two options:

* Option I: Pay $\mathbf{3} €$ for every traveled kilometer (km).
* Option II: Pay a fixed price of $10 €$ and then obtain a reduction of 30% on the charge for every traveled Kilometer in option I.

Designate by:

$>x$ the number of traveled kilometers.
$\Rightarrow f(x)$ and $g(x)$ the sum of money paid for option I and option II, respectively.

1) a) Express $f(x)$ in terms of x and show that $g(x)=2.1 \mathrm{x}+10 .(3 / 4 \mathrm{pt}, 1 \mathrm{pt})$
b) Which option is more advantageous for a man who is aiming to run the scooter for 13 km ? Justify.(1pt)
2) Study algebraically, according to the values of x, the most advantageous option.
(Note: two cases should be studied) ($11 / 2 p$ pts)

$$
2016 \text { - أيار - امتحان التجربة الثالثة - الصف التاسع - رياضيات إنكليزي }
$$

$6^{\text {th }}$ exercise: ($33 / 4 \mathrm{pts}$)

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and the corresponding answer, with justification.

No.	Questions	Answers		
		A	B	C
1.	The system $\left\{\begin{array}{l}x^{2}-4 \geq x(x+4) \\ x^{2}>-1\end{array}\right.$, is true for all values of x that belongs to the interval..... (11/2pts)] $-\infty$; $+\infty$ [$]-\infty ;-1[$	$]-\infty ;-1]$
2.	The measure of the acute angle that the straight line (d) of equation $\sqrt{3} y=-x+\sqrt{3}$ makes with $\mathbf{x}^{\prime} \mathbf{O x}$ is equal to $\ldots \ldots$ ($11 / 4 \mathrm{pts}$)	60°	30°	120°
3.	In the right triangle ABC of hypotenuse [BC] and height [AH], we have $\mathrm{BH}=3$ and $\mathrm{BC}=15 \mathrm{~cm}$ then $B A=$ \qquad (1pt)	$5 \sqrt{3}$	$3 \sqrt{5}$	$\sqrt{15}$

