مسابقة في الرياضيات الإنكليزي

- يمكن الإجابة على السائل بالنرتيب الالذي تريد -

$1^{\text {st }}$ exercise: (10pts)

Answer by true or false and justify your answer.

1) Given the system of equations (S): $\left\{\begin{array}{l}2 a-3 b=-14 \sqrt{2} \\ 3 a+2 b=18 \sqrt{2}\end{array}\right.$ and the table (T) to the right: If " a " and " b " verify the system (S), then (T) is a table of proportionality. (2 pts)

$\frac{a}{3}$	$3-2 \sqrt{2}$
$3+2 \sqrt{2}$	$\frac{b}{8}$

2) If a boy downloaded 10% of a file from the internet the first day and then downloaded 20% of the rest the second day, so he will still has 70% of the total to download. (1pt)
3) If ABC is a triangle such that: $\mathrm{AB}=\frac{4^{1005}-4^{1003}}{5 \times 4^{1003}}, \mathrm{AC}=\left(\frac{\sqrt{21} \times 10^{-12} \times \sqrt{63}}{21 \sqrt{3} \times 10^{-13}}\right)-\sqrt{16}$ and $\mathrm{BC}=(\sqrt{3}-1)^{2}-\sqrt{16}+\sqrt{75}$, then ABC is a semi-equilateral triangle at B . $\left(2^{1} / 2 \mathrm{pts}\right)$
4) The following identity is verified: $\frac{\operatorname{Sin}(\alpha)}{1+\operatorname{Cos}(\alpha)}+\frac{1+\operatorname{Cos}(\alpha)}{\operatorname{Sin}(\alpha)}=\frac{2}{\operatorname{Sin}(\alpha)}$ for any acute angle " α " . (11/2pts)
5) Is it true that both solutions of the equation: $\frac{x}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{x}(x \neq 0)$ are solutions of: $\frac{3 x-5}{2}-\frac{x+3}{3} \leq 2$? (2pts)
6)If $\vec{u}(2,3) \& \vec{v}(a-2, a+1)$ are collinear then $\mathrm{a}=2$. (1 pt)

$\underline{2}^{\text {nd }}$ exercise: (9 pts)

A public organization conducted a survey about the type of work that the members of certain families do.

Part A:

The following graph is obtained. (See it also on page 4)

1) Indicate the population, the variable and its nature. ($3 / 4 \mathrm{pt}$)

2) a) What do the terms: doctors \& merchants, on the given graph represent? ($3 / 4 \mathrm{pt}$)
b) What does each number on the vertical axis of the given graph represent? ($3 / 4 \mathrm{pt}$)
3) If the number of educators is $\mathbf{2 0 0}$, then determine the total frequency. ($3 / 4 \mathrm{pt}$)
4) Can you calculate the average value of the above data? Justify. ($3 / 4 \mathrm{pt}$)

Part B:

Now to study the monthly income of the 200 educators, the organization constructed the following polygon.

1) Draw the increasing cumulative frequency table in percent that represents the adjacent graph. ($11 / 2 p$ pts)
2) Is it true that:
a) 50% of the educators have a monthly income of at least 3000\$? Justify. (1pt)
b) If all educators are to have the same monthly income it would be $2500 \$$? Justify. ($1 \frac{1}{4}$ pts)

3) In July the monthly income of each educator doubles and increases by $200 \$$. Find the new average. ($11 / 2 \mathrm{pts}$)

$3^{\text {rd }}$ exercise: (12 pts)

In an orthonormal system of axes $x^{\prime} O x$ and $y^{\prime} O y$, consider the points $A(-4 ; 2), B(-1 ;-3)$, $\mathrm{C}(1 ; 5)$ and $\mathrm{R}(-3 m ; m-4)$, and the straight line (d): $5 x+3 y+14=0$.
(m is real number such that $m \neq-\frac{1}{3}$)

1) a) Place the points A, B, and C in the system. (1pt)
b) Show that (d) passes through the points A and B. ($3 / 4 \mathrm{pt}$)
c) Draw the (d) in the system. $(1 / 2 p t)$
2) Write an equation of the straight line (AC). ($3 / 4 \mathrm{pt}$)
3) a) Verify that the slope of the straight line (CR) is expressed by: $a_{\text {(CR) }}=\frac{9-m}{3 m+1} \cdot(1 / 2 p t)$
b) Prove that if (CR) is perpendicular to (d), then A is the midpoint of [CR]. ($1 \frac{1}{4} \mathrm{pts}$)
4) In what follows, we give: $m=3$.
a) What does the straight line (d) represent to the segment [CR]? Justify. ($3 / 4 \mathrm{pt}$)
b) Find the lengths of $[\mathrm{AB}]$ and $[\mathrm{CR}]$. (1 pt)
c) Deduce the nature of triangle CBA and the exact measure of [BC]. (11/4pts)
5) Let E be a point defined by: $\overrightarrow{R E}=\overrightarrow{R A}+\overrightarrow{R B}$
a) What is the nature of quadrilateral ARBE? Justify. Show that E belongs to abscissa axis. ($11 / 4 \mathrm{pts}$)
b) Determine the nature of the quadrilateral ABEC? Justify. (1pt)
c) Deduce that the circle of center E and radius $[A R]$ passes through the points $B \& C$. (1pt)
6) Find an equation of (Δ), the image of (d) by translation of vector $\overrightarrow{R B}+\frac{1}{2} \overrightarrow{R C}$. (1pt)

$4^{\text {th }}$ exercise: (9 pts)

The adjacent figure shows:
$\checkmark(\mathrm{C})$ is a circle of center O , diameter [AB]and radius $r=4 \mathrm{~cm}$.
$\checkmark \mathrm{D}$ and C are two points such that:
$\widehat{\boldsymbol{B O} \bar{C}}=100^{\circ}$ and (OD) is the bisector of the angle $\widehat{\boldsymbol{C O}} \overline{\boldsymbol{A}}$.
$\checkmark \mathrm{P}$ is the midpoint of [OC]
\checkmark The perpendicular bisector of [OC] that cuts (C) at E and F.

1) Reproduce the figure. $(3 / 4 \mathrm{pt})$
2) a) Prove that OCF is an equilateral triangle. ($3 / 4 \mathrm{pt}$)
b) Calculate PF, in two different ways. ($11 / 4 \mathrm{pts}$)
c) Prove that the area of triangle AOC is $8 \sin 80^{\circ}$. (1pt)

3) The parallel issued from O to (CD) cuts (BC) at I.
a) Calculate the measures of the angles $\widetilde{\boldsymbol{B A C}}$ and $\widetilde{\bar{D} \bar{O}} \overline{\text { a }}$. (1 pt)
b) Deduce that CDOI is a parallelogram. $(3 / 4 \mathrm{pt})$
c) What is the image of D by the translation of vector $\overrightarrow{\mathrm{OI}}$. ($1 / 2 \mathrm{pt}$)
d) What is the nature of the quadrilateral EDFI? Justify. (1pt)
4) Let H is the orthogonal projection of C on (AB).
a) Show that the triangles ABC and ACH are similar. (1pt)
b) Deduce AH and OH. (1pt)
