- -

Exercise 1: ($61 / 2 \mathrm{pts}$)

The following questions are independent:

1) If $A B C$ is any triangle such that I is the midpoint of [BC$]$, J is the midpoint of $[\mathrm{AC}]$ and G is its center of gravity, then show that $\overrightarrow{A B}+\overrightarrow{A C}=6 \overrightarrow{G I} .(3 / 4 \mathrm{pt})$
2) knowing that $(A B)$ and ($C D)$ are parallel, calculate x and $y .(y$ and $x>1)$

3) Find all negative integers that are solutions of the inequality:

$$
\frac{3 x+2}{5}-\frac{2 x+1}{3} \leq \frac{x+4}{3} .(1 \mathrm{pt})
$$

4) Determine the mean of the statistical series represented by the adjacent bar diagram. (pt)
5) Given the following numbers $m=2^{12}-2^{10}$ and $n=\frac{1}{2^{8}-2^{6}}$
 then calculate $\mathrm{m} \times \mathrm{n} .(1 \mathrm{pt})$
6) Given the equation $x^{2}-a x+1=0$. Calculate a so that $x=\frac{7+\sqrt{125}+\sqrt{20}}{14}$ is a solution of the equation. $(11 / 2 \mathrm{pts})$

Exercise 2: (3 pts)

5-lists competed in the 2018 parliamentary elections in Beirut. A survey is conducted about the number of votes given to each list by 115000 voters, and the following pie-chart was obtained.

1) Indicate the population, the variable and its nature. $(3 / 4 \mathrm{pt})$
2) A list wins, if it gets more than 20% of the votes.

a) Does list-A win? Justify. Determine how many votes this list took. (pt)
b) What does " n " represent? Determine its value and interpret its meaning. ($3 / 4 \mathrm{pt}$)
3) Can you calculate the average value of the above data? Justify. ($1 / 2 \mathrm{pt}$)

$$
2018 \text { - أيار - امتحان التجربة الثالثة ـ الصف الناسع - رياضبات إنكليزي }
$$

Exercise 3: : (11pts)

In an orthonormal system of axis $x^{\prime} O x$ and $y^{\prime} O y$, consider the points $A(2 ; 0), \mathrm{B}(6 ; 2)$ and $\mathrm{C}(-2 ; 2)$ and the straight line (d): $\mathbf{x}-\mathbf{2 y}-\mathbf{2}=\mathbf{0}$.

1) a) Plot the points A, B, and C in the system. (1pt)
b) Show that the line (d) passes through the points A and B and then darw (d). ($3 / 4 \mathrm{pt}$)
c) Calculate the lengths $A B$ and $A C$. Deduce the nature of triangle $A B C$. (1pt)
2) Let (Δ) be the line perpendicular to (AC) and passing through point A.

Write an equation of (Δ). $(3 / 4 \mathrm{pt})$
3) a) Let (Δ^{\prime}) be the line parallel to $y^{\prime} O y$ and passing through B.
(Δ) and $\left(\Delta^{\prime}\right)$ intersect at point E. Calculate the coordinates of E. ($3 / 4 \mathrm{pt}$)
b) Show that the points A and B belong to the circle (C) of diameter [CE]. (1pt)
4) a) Prove that the coordinates of point F the center of the circle (C) are $\mathrm{F}(2 ; 5)$. $(1 / 2 p t)$
b) The circle (C) cuts $y^{\prime} O y$ in two points L and K . Calculate the coordinates of L and K . ($11 / 2 \mathrm{pts}$)
5) Let S be the image of B by the translation of vector $\overrightarrow{A C}$.
a) Determine graphically the coordinates of vector $\overrightarrow{\mathrm{AC}}$. (Leave the traces on the figure) $(1 / 2 \mathrm{pt})$
b) Determine the nature of quadrilateral ABSC, and then calculate the coordinates of point S. ($11 / 4 \mathrm{pts}$)
c) Find the equation of the line (k) the image of (AB) by the translation of vector $\overrightarrow{\mathrm{AC}}$. (1 pt)
6) a) Calculate to the nearest degree the acute angle that the line (AB) makes with the axis $\mathbf{x} \mathbf{\prime} \mathbf{O x} .(1 / 2 \mathrm{pt})$
b) Deduce the acute angle that the line (AB) makes with the axis $\mathrm{y}^{\prime} \mathrm{Oy}$. $(1 / 2 \mathrm{pt})$

Exercise 4: ($91 / 2 \mathrm{pts}$)

In the adjacent figure:

- (S) is a semicircle of center O and radius R
- [EF] is the diameter of (S)
- A is the point on (EF) so that $\mathrm{OA}=2 \mathrm{R}$
- (d) is a variable line through A that intersects (S) at B and C.
- The tangents at B and C to (S) intersect at M

1) Show that (OM) is the perpendicular bisector of [BC]. (1pt)
2) $(O M)$ intersects $[B C]$ at I.

Let P be the orthogonal projection of M on (OA).
a) Show that the triangles OIA and OMP are similar. ($11 / 2 \mathrm{pts}$)
b) Deduce the relation $\mathrm{OA} \times \mathrm{OP}=\mathrm{OM} \times \mathrm{OI}$. (1pt)
c) By using the two right triangles MPO and MOC show that $\frac{O C}{\sin \widehat{C M O}}=\frac{O P}{\cos \widehat{M O P}} \cdot\left(1 \frac{1}{2}\right.$ pts $)$
3) a) Let (S^{\prime}) be the circle circumscribed about the triangle CIM. Show that (OC) is tangent to (S^{\prime}). (1 pt)
b) Use two similar triangles to prove that $\mathrm{OM} \times \mathrm{OI}=R^{2}$. $\left(1 \frac{1}{2}\right.$ pts $)$
c) Calculate OP in terms of R. (1pt)
4) K is the point of intersection of (MP) and (AI). (OK) cuts (AM) in N.

Show that (ON) is perpendicular to (AM). (1pt)

