التجربة الثالثة لعام 2017 – 2018		الشهادة المتوسطة	ليسنه دي زار
الرقم :	الإسم :	المدّة : ساعتان ونصف	مسابقة في الرياضيات الانكليزي

<u>إرشادات عامة:</u>

- يسمح بإستعمال آلة حاسبة غير قابلة للبرمجة.
- يمكن الإجابة على المسائل بالترتيب االذي تريد.
 - يرجى الإجابة بخط واضح ومرتب.
 - العلامة القصوى من 30

Exercise 1: (6½pts)

The following questions are independent:

- 1) If *ABC* is any triangle such that *I* is the midpoint of [BC], J is the midpoint of [AC] and G is its center of gravity, then show that $\overrightarrow{AB} + \overrightarrow{AC} = 6\overrightarrow{GI}$. (%4pt)
- 2) knowing that (*AB*) and (*CD*) are parallel, calculate x and y. (y and x > 1) (1¹/₄pts)⁶
- 3) Find all negative integers that are solutions of the inequality: $\frac{3x+2}{5} - \frac{2x+1}{3} \le \frac{x+4}{3}$. (1pt)
- 4) Determine the mean of the statistical series represented by the adjacent bar diagram. (1pt)
- 5) Given the following numbers $m = 2^{12} 2^{10}$ and $n = \frac{1}{2^8 2^6}$

then calculate $m \times n$. (1pt)

6) Given the equation $x^2 - ax + 1 = 0$. Calculate a so that $x = \frac{7 + \sqrt{125} + \sqrt{20}}{14}$ is a solution of the equation. (1¹/2pts)

Exercise 2: (3 pts)

5-lists competed in the 2018 parliamentary elections in Beirut. A

survey is conducted about the number of votes given to each list by

115 000 voters, and the following pie-chart was obtained.

- 1) Indicate the population, the variable and its nature. (¾pt)
- 2) A list wins, if it gets more than 20% of the votes.
 - a) Does list-A win? Justify. Determine how many votes this list took. (1pt)
 - b) What does "*n*" represent? Determine its value and interpret its meaning. (%4pt)
- 3) Can you calculate the average value of the above data? Justify. (½pt)

Exercise 3:: (11pts)

In an orthonormal system of axis x'Ox and y'Oy, consider the points A (2; 0), B (6; 2) and C (-2; 2) and the straight line (d): x - 2y - 2 = 0.

- 1) a) Plot the points **A**, **B**, and **C** in the system. (1pt)
 - b) Show that the line (d) passes through the points A and B and then darw (d). (¾pt)
 - c) Calculate the lengths **AB** and **AC**. Deduce the nature of triangle **ABC**. (1pt)
- 2) Let (Δ) be the line perpendicular to (AC) and passing through point A. Write an equation of (Δ) . (³/₄pt)
- 3) a) Let (Δ ') be the line parallel to *y* Oy and passing through B.
 - (Δ) and (Δ ') intersect at point E. Calculate the coordinates of E. (4 pt)
 - b) Show that the points A and B belong to the circle (C) of diameter [CE]. (1pt)
- a) Prove that the coordinates of point F the center of the circle (C) are F(2; 5). (½pt)
 b) The circle (C) cuts y' Oy in two points L and K. Calculate the coordinates of L and K. (1½pts)
- 5) Let S be the image of B by the translation of vector \overrightarrow{AC} .
 - a) Determine graphically the coordinates of vector \overrightarrow{AC} . (Leave the traces on the figure) (½pt)
 - b) Determine the nature of quadrilateral ABSC, and then calculate the coordinates of point S. (1¼pts)

M

0

B

(d)

- c) Find the equation of the line (k) the image of (AB) by the translation of vector \overrightarrow{AC} . (1pt)
- 6) a) Calculate to the nearest degree the acute angle that the line (AB) makes with the axis x'Ox. (½pt)
 b) Deduce the acute angle that the line (AB) makes with the axis y'Oy. (½pt)

Exercise 4: (9½ pts)

In the adjacent figure:

- (S) is a semicircle of center O and radius R
- [EF] is the diameter of (S)
- A is the point on (EF) so that OA = 2 R
- (d) is a variable line through A that intersects (S) at B and C.
- The tangents at B and C to (S) intersect at M
- 1) Show that (OM) is the perpendicular bisector of [BC]. (1pt)
- 2) (OM) intersects [BC] at I.
 - Let P be the orthogonal projection of M on (OA).
 - a) Show that the triangles OIA and OMP are similar. (1½pts)
 - b) Deduce the relation $OA \times OP = OM \times OI$. (1pt)
 - c) By using the two <u>right</u> triangles **MPO** and **MOC** show that $\frac{OC}{sin\overline{CMO}} = \frac{OP}{cos\overline{MOP}}$. (1½pts)
- 3) a) Let (S') be the circle circumscribed about the triangle CIM. Show that (OC) is tangent to (S'). (1pt)
 - b) Use two similar triangles to prove that $OM \times OI = R^2$. (1½pts)
 - c) Calculate OP in terms of R. (1pt)
- 4) K is the point of intersection of (MP) and (AI). (OK) cuts (AM) in N. Show that (ON) is perpendicular to (AM). (1pt)