1- Where do you see numbers in real life?
\qquad
2- Why do we use numbers?

3- Consider the set of numbers: $P=\left\{-2, \frac{7}{5},-1,3,0,1, \frac{1}{3}, \sqrt{9+16},\left(\frac{1}{3}-\frac{12}{21}\right)\right\}$.

a. Sort the numbers of set P in the above diagram (a number can be used more than once).
b. What name can you give for each group.

Conclusions: Numbers are classified into sets (groups) according to their purpose.

1. Natural numbers:

Write down numbers that you use for counting the number of pages of a book or any other thing we use:
$\underline{E x_{1}}:$ Consider the set of numbers $\{1,2,3,4,5$ $\}$
a) Trace a number line and place the above numbers on it.
b) What do you notice about the position of these numbers on the number line?

$$
\text { Conclusions: The set of natural numbers is denoted by: } \mathbb{N}=\{0,1,2,3,4 \ldots\}
$$

Ex2: Consider the following equations:1) $x+3=5$
2) $2 x+5=3$
a) Solve equation-1 for x in the set \mathbb{N}.
b) If you are only familiar with the set of natural numbers, then can you find a value of x that satisfies equation-2? Show your work.
c) What suggestions do you make to have a solution for equation-2.

2. Integers:

As you noticed, from the above example that some equations of the form $x+a=b$, where $a \& b$ belong to \mathbb{N} cannot be solved in the set \mathbb{N}.
$\underline{E x}_{3}$: What type of numbers would you use to represent the following situations?

- Temperature below zero.
- Places below ground floor
- Down slopes.
- Value that verifies: $x+3=2$
- Loss.
$>$ So we will extend the set \mathbb{N} to the set of integers \mathbb{Z}, which stands for Zahlen.
$>$ The set of integers consists of numbers such as:

$\underline{E x_{4}}$: Describe the set of integers in terms of natural numbers.

Conclusions:

1) The set of integers is denoted by: $\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$.
2) Integers are natural numbers and their opposites.

Ex5: Solve the following equations in \mathbb{Z} :
$>x^{2}-4=0$
> $2 x+3=0$

3. Rational numbers:

\mathbb{Z}, is insufficient to solve some equations of the form $a x+b=0$, where $a \& b$ belong to \mathbb{Z}.
So, we will extend the set \mathbb{Z} into the set of rational numbers.
The word rational is derived from ratio. So, we can deduce that any number that can be written in the ratio form, $\frac{a}{b}$, where $a \& b$ are integers such that $b \neq 0$ is said to be a rational number.
Example: $\frac{2}{3},-\frac{4}{5}, \frac{2}{1}, \frac{1}{3}$, are rational numbers.

1) The set of rational numbers is denoted by: $Q=\left\{\ldots-\frac{1}{3},-\frac{1}{2},-1,0, \frac{1}{3}, \frac{3}{2}, \frac{35}{4} \ldots\right\}$.

Conclusions:

2) A number is rational if that can be written in the ratio form, $\frac{a}{b}$, where $a \& b$ are integers such that $b \neq 0$.

A rational number can be written in decimal form.
m Decimal form of a rational number:
follow anes A number in decimal form is said to be rational if:

A number in decimal form is said to be rational if:

How to express a rational number in decimal form in the form of a ratio?

Cases					
Limited decimal part			Unfimited decimal part		
	Course	Application		Course	Application
$1^{\text {st }}$	Eliminate the decimal point	3.45	$1^{\text {st }}$	Separate integral part from the repeated decimal part by a "+" sign.	$1 . \overline{75}$
		$\begin{array}{\|cc} \hline 3 & 45 \\ \text { decimal.part } \end{array}$			$=1+75$
$2^{\text {nd }}$	Divide number by 10	$\frac{345}{10 \cdots}$	$2^{\text {nd }}$	Divide decimal part by equivalent number of 9's.	$1+\frac{75}{99}$
$3{ }^{\text {rd }}$	Raise the 10 to a power equivalent to number of digits of the decimal part	$\frac{345}{10^{2}}$	$3^{\text {rd }}$	Add numbers.	$\frac{1 \times 99}{99}+\frac{75}{99}$

Formal method

* Write $a=3 . \overline{72}$ in ratio form.

$$	Steps	Statement
	$a=3.727272 .$.	Write in expanded form
	$100 a=372.7272 \ldots$	Multiply both sides by a power of ten equal to the period
	$99 a=369$	Subtract previous equations to get rid of decimal part
	$a=\frac{369}{99}$	Divide both sides by 99 to get a fraction form
C		
	tional numbers:	e numbers that cannot be written in the form of a ratio

Common forms of irrational numbers:

$$
\text { ® } \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6} \ldots
$$

$$
\text { ß } \pi \approx 3.1415 \ldots
$$

§ Numbers, in decimal form with infinite non periodic decimal part, Ex: 7.9425721...

4. Real numbers:

Is the set of all numbers, it includes all the above sets, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and the set of irrational numbers.
This set is denoted by: $\mathfrak{R}=\left\{\ldots,-2,-\frac{1}{2}, 0,1, \sqrt{2}, \pi, 4.5 \ldots\right\}$

Page $\mathbf{3}$ of $\mathbf{4}$

Summary of the lesson using:

. Flow Chart:

${ }^{4}$) Venn Diagram:

RealNumbers

