Mathematics

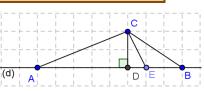
1cm

Name: "Circles & its relative positions with a st. line & a circle" A.S-10.

Can you find in the following pictures a fixed point which is at a constant distance from all other points?

Ex-1: In the figure below the point *O* is fixed where *A* is any variable point so that OA = 2cm.

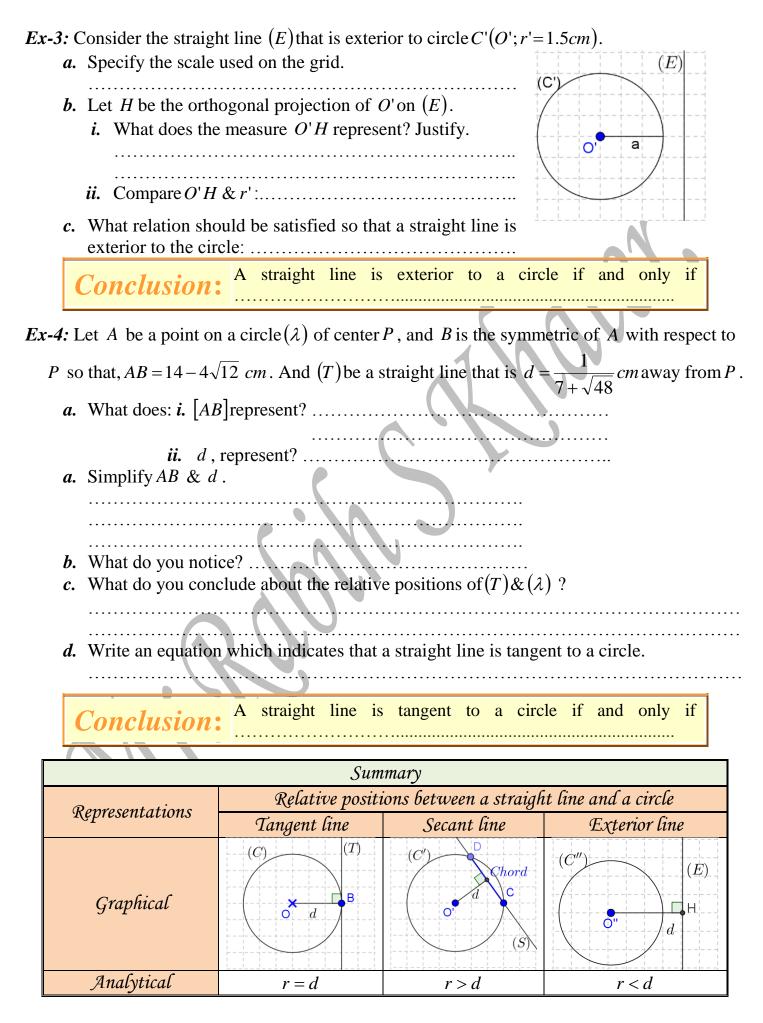
- *a*. If *A* is to vary(move) on the plane:
 - i. Plot three different positions of *A*.
 - ii. What do you imagine the path (Locus) of *A* be?

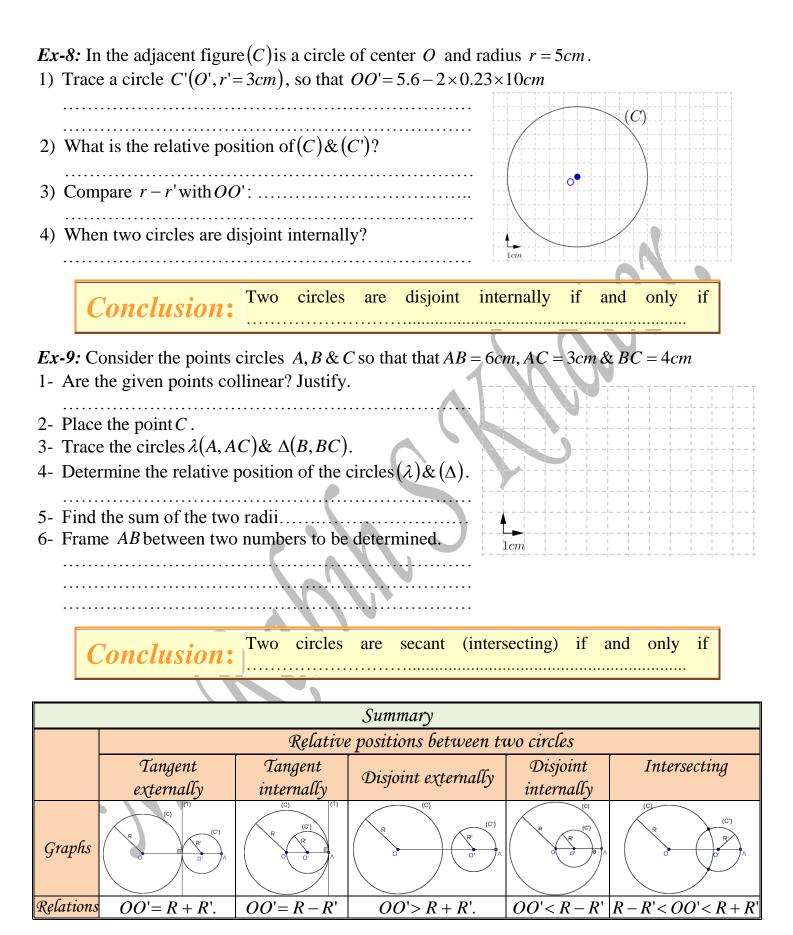

iii. What conditions are needed to obtain a circle?

iv. What does the given OA = 2cm tell you?

Def: A circle is a set of variable points that are at adistance from apoint in a plane, where the constant distance is called the and the fixed point is called the

1010


Retall: which segment represents the distance between the point C and the straight line (d)?
 Describe the distance between a point & a straight line.


×0

Relative positions of a straight line and a circle

Ex 2. Consider the size $C(0, x - 1, 5, cm)$	+
Ex-2: Consider the circle $C(O; r = 1.5cm)$.	
a. What does this notation, $C(O; 1.5cm)$, tell you?	
b. Draw (C) on the adjacent grid & trace the straight line	
(S) such that the distance, d , between (S) and O is $1cm$.	· · · · · · · · · · · · · · · · · · ·
<i>c</i> . Compare <i>d</i> & <i>r</i> :	+
•	+
d. Does (S) , intersect (C) ?	
many points?	1cm
e. Deduce the relative positions of (S) and (C) .	
f. Bound d in a way that (S) remains secant to (C)	· · · · · · · · · · · · · · · · · · ·
g. What happens to the length of the chord formed by the point	nts of intersection of
(S) & (C), if d = 0	
h. What do we call the chord that passes through the center of	the circle?
Conclusion: A straight line is secant to a ci	rcle if and only if
oth carf	$\mathbf{D}_{a} \approx 1_{a} \mathbf{f} \mathbf{A}$

Relative positions of two circles
Ex-5: Consider the circles $\eta(0,3cm)$ & $\delta(O',2cm)$ where $OO' = \frac{2^3 + 32}{2^3}cm$
1) Prove that <i>OO</i> ' is a natural number to be determined.
 2) Find the sum of the two radii:
7) When two circles are tangent externally?
Conclusion: Two circles are tangent externally if and only if
Ex-6: Consider the circles $\lambda(O,5cm) \& \Delta(O',3cm)$ where $OO' = \frac{3^3 + 243}{135} cm$
a) Prove that <i>OO</i> ' is a natural number to be determined.
b) Find the difference between the two radii.
 c) Compare the obtained difference with OO':
Conclusion: Two circles are tangent internally if and only if
<i>Ex-7:</i> Consider the circles $\lambda(O,3cm)$ & $\Delta(O',2cm)$ where $OO' = 0.6 + 2 \times 0.32 \times 10cm$
1) Prove that <i>OO</i> ' is a natural number to be determined.
2) Find the sum of the two radii
3) Compare the obtained sum with OO':
4) Draw on the adjacent grid $(\lambda) \& (\Delta)$.
5) At how many points do $(\lambda) \& (\Delta)$ intersect?
6) Deduce the relative positions of $(\lambda) \& (\Delta)$.
7) When two circles are disjoint externally?
Conclusion: Two circles are disjoint externally if and only if

