Same: "Circles \mathcal{L} its relative positions with a st. Fine \mathcal{L} a circle" \mathcal{A}.S-10.

Can you find in the following pictures a fixed point which is at a constant distance from all other points?

$\boldsymbol{E x}$-1: In the figure below the point O is fixed where A is any variable point so that $O A=2 \mathrm{~cm}$.
a. If A is to vary(move) on the plane:
i. Plot three different positions of A.
ii. What do you imagine the path (Locus) of A be?
.............. $\quad x$
iii. What conditions are needed to obtain a circle?
iv. What does the given $O A=2 \mathrm{~cm}$ tell you?

A circle is a set of variable points that are at a
distance from a
.point in a plane, where the constant distance is called the and the fixed point is called the

O"O 】uecall: which segment represents the distance between the point C and the straight line (d)?
Describe the distance between a point \& a straight line.

Relative positions of a straight line and a circle

$E x-2$: Consider the circle $C(O ; r=1.5 \mathrm{~cm})$.
a. What does this notation, $C(O ; 1.5 \mathrm{~cm})$, tell you?
b. Draw (C) on the adjacent grid \& trace the straight line
(S) such that the distance, d, between (S) and O is 1 cm .
c. Compare $d \& r$:
d. Does (S), intersect (C) ?If yes then in how many points?

\boldsymbol{e}. Deduce the relative positions of (S) and (C)
f. Bound d in a way that (S) remains secant to (C)
g. What happens to the length of the chord formed by the points of intersection of $(S) \&(C)$, if $d=0$
\boldsymbol{h}. What do we call the chord that passes through the center of the circle?
Conclusion:
A straight line is secant to a circle if and only if
$8^{\text {th }}-$ Grade.
$\boldsymbol{E x}$-3: Consider the straight line (E) that is exterior to circle $C^{\prime}\left(O^{\prime} ; r^{\prime}=1.5 \mathrm{~cm}\right)$.
a. Specify the scale used on the grid.

c. What relation should be satisfied so that a straight line is exterior to the circle:
Conclusion: A straight line is exterior to a circle if and only if
$\boldsymbol{E x}$-4: Let A be a point on a $\operatorname{circle}(\lambda)$ of center P, and B is the symmetric of A with respect to P so that, $A B=14-4 \sqrt{12} \mathrm{~cm}$. And (T) be a straight line that is $d=\frac{1}{7+\sqrt{48}} \mathrm{~cm}$ away from P.
a. What does: i. $[A B]$ represent?

$$
\text { ii. } d, \text { represent? }
$$

a. Simplify $A B$ \& d.
\qquad
\qquad
b. What do you notice?
c. What do you conclude about the relative positions of $(T) \&(\lambda)$?
d. Write an equation which indicates that a straight line is tangent to a circle.

Conclusion: A straight line is tangent to a circle if and only if

Summary			
Representations	Relative positions between a straight line and a circle		
	Tangent line	Secant line	Exterior fine
Graphical			
Analytical	$r=d$	$r>d$	$r<d$

Refative positions of two circles

$\boldsymbol{E x}$-5: Consider the circles $\eta(O, 3 \mathrm{~cm}) \& \delta\left(O^{\prime}, 2 \mathrm{~cm}\right)$ where $O O^{\prime}=\frac{2^{3}+32}{2^{3}} \mathrm{~cm}$

1) Prove that $O O^{\prime}$ is a natural number to be determined.
2) Find the sum of the two radii:
3) Compare the obtained sum with $O O^{\prime}$
4) Draw on the adjacent $\operatorname{grid}(\eta) \&(\delta)$.
5) At how many points do $(\eta) \&(\delta)$ intersect?
6) Deduce the relative positions of $(\eta) \&(\delta)$.

7) When two circles are tangent externally?

Conclusion: Two circles are tangent externally if and only if

$\boldsymbol{E x}$-6: Consider the circles $\lambda(O, 5 \mathrm{~cm}) \& \Delta\left(O^{\prime}, 3 \mathrm{~cm}\right)$ where $O O^{\prime}=\frac{3^{3}+243}{135} \mathrm{~cm}$
a) Prove that $O O^{\prime}$ is a natural number to be determined.
b) Find the difference between the two radii.
c) Compare the obtained difference with $O O^{\prime}$
d) Draw on the adjacent $\operatorname{grid}(\lambda) \&(\Delta)$.
e) At how many points do $(\lambda) \&(\Delta)$ intersect?
f) Deduce the relative positions of $(\lambda) \&(\Delta)$.
g) When two circles are tangent internally?

Conclusion: Two circles are tangent internally if and only if
$\boldsymbol{E x}$-7: Consider the circles $\lambda(O, 3 \mathrm{~cm}) \& \Delta\left(O^{\prime}, 2 \mathrm{~cm}\right)$ where $O O^{\prime}=0.6+2 \times 0.32 \times 10 \mathrm{~cm}$

1) Prove that $O O^{\prime}$ is a natural number to be determined.
2) Find the sum of the two radii.
3) Compare the obtained sum with $O O^{\prime}$
4) Draw on the adjacent $\operatorname{grid}(\lambda) \&(\Delta)$.
5) At how many points do $(\lambda) \&(\Delta)$ intersect?
6) Deduce the relative positions of $(\lambda) \&(\Delta)$.
\qquad

7) When two circles are disjoint externally?
Conclusion:
Two circles are disjoint externally if and only if
$\boldsymbol{E x}$-8: In the adjacent figure (C) is a circle of center O and radius $r=5 \mathrm{~cm}$.
8) Trace a circle $C^{\prime}\left(O^{\prime}, r^{\prime}=3 \mathrm{~cm}\right)$, so that $O O^{\prime}=5.6-2 \times 0.23 \times 10 \mathrm{~cm}$
\qquad

$$
(C)
$$

2) What is the relative position of $(C) \&\left(C^{\prime}\right)$?
3) Compare $r-r^{\prime}$ with $O O^{\prime}$:
4) When two circles are disjoint internally?

Conclusion: Two circles are disjoint internally if and only if
$\boldsymbol{E x}$-9: Consider the points circles $A, B \& C$ so that that $A B=6 \mathrm{~cm}, A C=3 \mathrm{~cm} \& B C=4 \mathrm{~cm}$ 1- Are the given points collinear? Justify.

2- Place the point C.
3- Trace the circles $\lambda(A, A C) \& \Delta(B, B C)$.
4- Determine the relative position of the circles $(\lambda) \&(\Delta)$.
5- Find the sum of the two radii
6- Frame $A B$ between two numbers to be determined.

\qquad
\qquad
\qquad
Conclusion: Two circles are secant (intersecting) if and only if

Summary					
	Relative positions between two circles				
	Tangent externally	Tangent internally	Disjoint externally	Disjoint internally	Intersecting
Graphs					
Relations	$O O^{\prime}=R+R^{\prime}$.	$O O^{\prime}=R-R^{\prime}$	$O O^{\prime}>R+R^{\prime}$.	$O O^{\prime}<R-R^{\prime}$	$R-R^{\prime}<O O^{\prime}<R+R^{\prime}$

