Al- Mandi High
Name: \qquad
Mathematics
$11^{\text {th }}$-Grade
Numerical Sequence
A.S-10.

A- Focusing event:

Determine:	$-\quad$ The hundredth odd number:
	$-\quad$ The sum of the first 100 numbers:

B_{B} Reviewing the definition of a function:

1) Which of the following representations is a function? Justify.

h	x	2	5	7	9
	$h(x)$	-3	0	2	4

2) In the above representations:
a. What do $x \& y$ determine?
\qquad y :
b. Determine the domain and range of the above representations:
$D_{f}=$ \qquad $D_{g}=$
$D_{h}=$
$R_{f}=$
...................... $\quad R_{f}=$
$R_{h}=$
\qquad

C - Defining a sequence:

Consider the sequences of numbers: $\left(u_{n}\right): 0,1,2,3,4,5,6 \ldots ;\left(v_{n}\right):-1.5,-1-0.5,0,0.5,1 \ldots$
1- Complete the following tables:

$\left(u_{n}\right)$	Term	1	2	6
	Term value			

$\left(v_{n}\right)$	Term	1	3	4
	Term value			

2- Can the $1^{\text {st }}$ term of any sequence take more than one value?
3- Is a sequence a function? Justify.
4- Determine the domain and range of the sequences $\left(u_{n}\right) \&\left(v_{n}\right)$:
Domain:
Range:
5- Fill in the blanks with the most convenient word: (natural, integer, real, decimal)

- Order of terms of a sequence are \qquad .numbers.
- Term values of a sequence are: \qquad
6- Are the sets $A=\{-2,1,4\} \& B=\{1,4,-2\}$ equal? Justify.
7- Are the sequences: $\left(u_{n}\right): 2,4,8,16,32 \&\left(v_{n}\right): 32,16,8,4,2$ equal? Justify.

[^0]
D- Representation of a sequence:

A sequence $\left(U_{n}\right)$ can be represented in two main forms:
Exy: Find the first three terms and the $50^{\text {th }}$ term of the sequence $\left(b_{n}\right)$ defined by its general term: $b_{n}=2-\frac{1}{n^{2}}$
$E x_{2}$: Consider the following pattern:

1) Use the above pattern to complete the following table:

n	1	2	3			
a_{n}	1	3				

2) What does a_{n} represent in this pattern?
3) Find a relation between each two consecutive terms of the given pattern:

- $a_{2}=a_{1}+2$
- $a_{5}=$
- $a_{3}=$ \qquad
\qquad

$$
a_{6}=.
$$

- $a_{4}=$ \qquad

4) Deduce a general relation between any two consecutive terms $\left(a_{n} \& a_{n+1}\right)$ of the above pattern:
5) Can you find a_{1000} with the above relation?

- Explicit form: A sequence $\left(u_{n}\right): u_{n}=3 n+2, \forall n \in \mathbb{N}$, is in explicit form, if its $\ldots \ldots$. term is expressed in terms of, and it is useful to find any \qquad of the sequence.
Forms:
- Implicit or Recursive form: A sequence eg: $\left(u_{n}\right):\left\{\begin{array}{l}u_{1}=3 \\ u_{n+1}=5 u_{n}-7\end{array}, \forall \ldots\right.$, is in implicit or recursive form, if its formula is expressed in terms of two of its
\qquad where the value of the \qquad is given.

E- Sense of variation of a sequence:

- Figure-1: The curve, C_{f}, is the representative curve of the function f.
- Figure-2: is the graphical representation of the first eight terms of a linear sequence.
- Figure-3: is the graphical representation of the first six terms of a geometric sequence.

1) Determine the sense of variation of the:

Function f	Linear sequence	Geometric sequence

Conclusions:	A sequence $\left(u_{n}\right)$ defined by its consecutive terms $u_{n} \& u_{n+1}$ is: - Strictly increasing iff: $u_{n+1}-u_{n}<0$ - Increasing iff: \qquad - Strictly decreasing iff: \qquad - Decreasing iff: \qquad

Ex: Study the variation of the:

Sequences for all $n \in \mathbb{N}$	
$\left(u_{n}\right): u_{n}=3 n+1$	Your solution
$\left(v_{n}\right): v_{n}=\frac{1-2 n}{n+1}$	
$\left(w_{n}\right):\left\{\begin{array}{ll\|}w_{1}=4 \\ w_{n+1}=w_{n}-2\end{array}\right.$	

F- Particular sequences:

it Arithmetic sequence:

- Focusing event: A car company X issues each year a new version, in its first four years the numeration took this form: $X_{3}, X_{7}, X_{11}, X_{15} \ldots$. . Determine the serial number that the car will take in the companies' $20^{\text {th }}$ anniversary.
- Definition \&L determination of the general term:

I- Consider the following arithmetic sequences $\left(a_{n}\right) \&\left(b_{n}\right)$ defined by their terms:

The sequence	Terms
$\left(a_{n}\right)$	$2,4,6,8,10,12 \ldots$
$\left(b_{n}\right)$	$10,7,4,1,-2,-5 \ldots$

a- Determine the following differences for the A.S:

- $\left(a_{n}\right): \begin{cases}a_{2}-a_{1}=\ldots . . . ; & a_{3}-a_{2}=\ldots . . . \\ a_{4}-a_{3}=\ldots . . & a_{5}-a_{4}=\ldots . .\end{cases}$
$-\left(b_{n}\right): \begin{cases}b_{2}-b_{1}=\ldots \ldots ; & b_{3}-b_{2}=\ldots \ldots . \\ b_{4}-b_{3}=\ldots . . & b_{5}-b_{4}=\ldots . .\end{cases}$
b- What do you notice?
c- Let d be the common difference, and deduce the definition of an arithmetic sequence:

Def $_{2}$:A sequence $\left(u_{n}\right)$ is arithmetic if and only if the between any two consecutive terms is
d- Can you determine the sense of variation of both sequences $\left(a_{n}\right) \&\left(b_{n}\right)$, without knowing their general terms? Explain.

II- Consider the arithmetic sequence $\left(a_{n}\right)$ of common difference d
a. Complete the following table to find the general term:

Starting from the term: a_{0}	Starting from the term: a_{1}
$a_{1}=a_{0}+d$	$a_{2}=a_{1}+d$
$a_{2}=\ldots \ldots \ldots$.	$a_{3}=\ldots \ldots$.
$a_{3}=\ldots \ldots \ldots$.	$a_{4}=\ldots \ldots$.
$a_{4}=\ldots \ldots \ldots \ldots$.	$a_{5}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
$a_{n}=a_{0}+\ldots \ldots$.	$a_{n}=a_{1}+\ldots \ldots$.

b. If the first term of the sequence is a_{p}, then find the general term a_{n} as a function of a_{p} :
c. Now try to answer the focusing event question:

- Properties of an arithmetic sequence:

III- Consider the arithmetic sequence $\left(a_{n}\right)$ defined by its terms $(a, b, c, d \& e) \equiv(3,5,7,9 \& 11)$.
a. Find the following:

Term	As a function of
b	$a \& c:$
c	$b \& d:$
c	$a \& e:$

b. What do you notice?
c. Complete the following conclusion:

The double of any term in $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. sequence is equal to
Conclusions $: ~$
property is known as the arithmetic mean.

- Sum of terms of an arithmetic sequence:
- Focusing event: Determine the sum of the first:

Ten natural numbers	Hundred non-zero natural numbers
0	1
1	2
2	3
3	
4	
5	

IV- Consider the arithmetic sequence (u_{n}) of common difference d
a) Complete the following table to find the general term:

Starting from the term: u_{0}		Starting from the term: u_{1}	
Term	Value	Term	Value
1	u_{0}	1	u_{1}
2	$u_{1}=u_{0}+d$	2	$u_{2}=u_{1}+d$
3	$u_{2}=u_{0}+2 d$	3	$u_{3}=u_{1}+2 d$
4	$u_{3}=u_{0}+3 d$	4	$u_{4}=u_{1}+3 d$
$:$	$:$	$:$	$:$
\cdot	.	\cdot	.
Sum: $S_{n}=$	Sum: $S_{n}=$		

b) Now try to answer the focusing event question:
\star Geometric sequence:

- Definition and determination of the general term:

A) My father \& my mother are my first degree ancestors. I take their number to be $A_{1}: A_{1}=2$. Each one of my parents had a father and a mother who are my second degree ancestors. I take their number to be $A_{2}: A_{2}=4$.

Denote by $A_{3} \& A_{4}$ the third and fourth degree of ancestors
a) Complete the following table:

n	1	2	3	4	5
A_{n}	$A_{1}=2$	$A_{2}=4$			

b) Determine the ratios: $\frac{A_{2}}{A_{1}}=\ldots \ldots ; \frac{A_{3}}{A_{2}}=\ldots \frac{A_{4}}{A_{3}}=$
c) Compare the formed ratios:
d) Deduce the value of A_{5}.
e) Verify that: $A_{3}=A_{1} \cdot r^{3-1}$, where r is the common ratio.
f) Use, A_{3} to find
i. A_{6} :
ii. A_{9} :
g) Determine a general rule that relates any two none-consecutive terms:
V - Consider the following geometric sequences $\left(v_{n}\right) \&\left(w_{n}\right)$ defined by their terms:

The sequence	Terms
$\left(v_{n}\right)$	$2,4,8,16,32,64 \ldots$
$\left(w_{n}\right)$	$81,27,9,31, \frac{1}{3}, \ldots$

h) Determine the following ratios for the G.S:

$$
\left(v_{n}\right):\left\{\begin{array}{ll}
\frac{v_{2}}{v_{1}}=\ldots . . ; & \frac{v_{3}}{v_{2}}=\ldots . . \\
\frac{v_{4}}{v_{3}}=\ldots . . ; & \frac{v_{5}}{v_{4}}=\ldots . .
\end{array} \quad\left(w_{n}\right): \begin{cases}\frac{w_{2}}{w_{1}}=\ldots . . ; & \frac{w_{3}}{w_{2}}=\ldots . . \\
\frac{w_{4}}{w_{3}}=\ldots . . ; & \frac{w_{5}}{w_{4}}=\ldots . .\end{cases}\right.
$$

i) What do you notice?
j) Let r be the common ratio, and deduce the definition of the geometric sequence:

A sequence $\left(u_{n}\right)$ is geometric if and only if the
between any two consecutive terms is
e- Can you determine the sense of variation of both sequences $\left(v_{n}\right) \&\left(w_{n}\right)$, without knowing their general terms? Explain.

VI- Consider the geometric sequence $\left(a_{n}\right)$ of common ratio r
a. Complete the following table to find the general term:

Starting from the term: a_{0}	Starting from the term: a_{1}
$a_{1}=a_{0} \cdot r$	$a_{2}=a_{1} \cdot r$
$a_{2}=. ~$	$a_{3}=$......................
	$a_{4}=\ldots ~$
$a_{4}=\ldots \ldots \ldots$.	$a_{5}=\ldots \ldots \ldots$.
:	
$a_{n}=a_{0} \cdot r^{\text {ºw }}$	$a_{n}=a_{1} \cdot r$

b. If the first term of the sequence is a_{p}, then find the general term a_{n} as a function of a_{p} :
\square
A sequence $\left(u_{n}\right)$ is geometric if and only if the ratio, r, between any two $D_{e} f_{2}$: consecutive terms is $\ldots \ldots \ldots \ldots$, where the general term $u_{n}=u_{1} \cdot r \cdots \cdots$ or $u_{n}=u_{p} \cdot r \cdots$ such that $n \& p$ belong to \mathbb{N}.

- Sum of terms of a geometic sequence:

VII- Consider the sum, $S_{n}=\sum_{i=0}^{n} u_{n}$ of n terms of a G.S $\left(u_{n}\right)$ with common ratio $r \neq 1$:
a. Write $S_{n}=\sum_{i=0}^{n} u_{n}$ in expanded form:
b. Find the product, $r \cdot S_{n}$:
c. Deduce the value of S_{n} in terms of $r, u_{1} \& u_{n}$ exclusively:
d. Determine S_{n} in terms of the first term and the common ratio of the sequence.
\Rightarrow The sum of n terms of a G.S $\left(u_{n}\right)$ with a common ratio $r \neq 1$ starting from:
$\stackrel{4}{4} u_{0}$ is given by: $\sum_{i=0}^{n} u_{n}=u_{0}+u_{1}+u_{2}+\ldots+u_{n}=S_{n}=\frac{u_{0}\left(1-r^{n+1}\right)}{1-r}$
(4) u_{1} is given by: $\sum_{i=1}^{n} u_{n}=u_{1}+u_{2}+\ldots+u_{n}=S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$

[^0]: Deff: - A sequence is a from
 to

 - A sequence is a list of numbers that follow a certain

