Al Mahdi High Schools (Al-Hadath)

Mathematics

11th-Grade

Name:

"Orthognality "

A.S-11.

Collinearity in space

Property: To prove that three distinct points in space are collinear, it is enough to show that these points belong to two distinct planes.

App-1:

In the tetrahedron ABCD, let E & F be any two points on (BD) &]CD[respectively, so that (EF) & (BC) intersect at G. Let H be any point on]AD[such that I & K are the respective intersection points of (EH)&(AB) and (FH)&(AC).

1- Determine the straight line $(\Delta) = (ABC) \cap (EFH)$

App-2:

In the adjacent figure SABC is a tetrahedron, where D, K & L are the respective midpoints of sides [AS], [CS] & [BS] and $A\hat{B}C = 40^{\circ} \& A\hat{C}B = 70^{\circ}$.

1- What is the relative position of

	(BC)&(LK)?				
	(KD)&(AC)?				
	(AC)&(DL)?		40° -		
2-	Deduce the angle formed between the straight lines:				
	(KD)&(KL)				
	(AC)&(DL)				

11th-Grade.

Mathematics. A.S-11 Orthogonality

3- What do you conclude?

Analytically	Graphically
To find the angle between any two non-	(l) (l')
coplanar lines, we determine the angle	
formed between any	

App-3: Orthogonal lines

<u>Def</u>: Two lines are orthogonal *iff* the included angle is $\frac{\pi}{2}$

ŀ	<u>Eg</u> :				
	St.lines	Intersection	Angle	Perpendicular	Orthogonal
	(CD)&(CB)	В	$\frac{\pi}{2}$	~	v
	(CD) & (AE)	Ø	$\frac{\pi}{2}$		~

Use the paving stone *ABCDEFGH* where R & N are the respective midpoints of [EH]&[BC] to complete the table

Perpendicular	Justification	Orthogonal	Justification
$(AB) \perp$		$(AB) \perp$	
$(AB) \perp$		$(AB) \perp$	
$(AB) \perp$		$(AB) \perp$	
$(NR) \perp$		$(NR) \perp$	
$(NR) \perp$		$(NR) \perp$	

Conclusions: Two straight lines are:

Orthogonal if:
Perpendicular if:

<u>Dote that</u>: $\frac{1}{2}$ Two orthogonal lines are not necessarily intersecting.

Two perpendicular lines are always intersecting.

<u>*Ex*</u>: In the adjacent figure, C(O, OE) is in plane (*P*). Trace (*RN*) the perpendicular bisector of [*OE*] in (*P*) & (Δ) the perpendicular to (*P*) at *E*.

- 1) Complete figure.
- 2) Prove that (RN) is orthogonal to (FO), where $F \in (\Delta)$

Line orthogonal to a plane in space

	Definition	Proof	
Analytically	A line is perpendicular to a plane if it is orthogonal to every line subset of this plane.	To prove that a line is perpendicular to a plane, it is enough to show that this line is orthogonal to two intersecting lines subset of this plane.	
Geometrically			
App-3: Consider the cube $ABCDEFGH$. 1) Show that: a. (AE) is perpendicular to (BCD) . b. (GH) is perpendicular to (ADE) .			
2) Deduce that: i. $(AE) \perp (BD)$. ii. $(GH) \perp (ED)$.			
3) Prove that (AE) is perpendicular to (FGH).		
4) What is the relative positions of the planes: (<i>BCD</i>) & (<i>FGH</i>) .			

Properties

Consider *ABC* to be a right isosceles triangle at *A* in a plane(*P*). Let *S* be a point on straight line (Δ) the perpendicular to (*P*) at *A*.

1) Prove that (AB) is perpendicular to (SAC)
2) Show that the triangles <i>SAB</i> & <i>SAC</i> are congruent.
3) Deduce the nature of the triangle <i>SBC</i> .
Prop-1 If a point S belongs $to(\Delta)$, the Perpendicular to (P) at A, where A is equidistant from $B \& C in(P)$ then S is equidistant from $B \& C$ and vice versa.
4) Let <i>I</i> be the midpoint of $[BC]$. Show that (BC) is perpendicular to the plane (SAI)
5) Plot <i>N</i> the orthogonal projection of <i>A</i> on (<i>SI</i>). Prove that (<i>AN</i>) is orthogonal to (<i>SB</i>).

Mediator plane of a segment

<u>REMINDER</u>:

- 1) What does (Δ) represent in the adjacent figure?
- 2) Describe S with respect to A & B. Justify.

Def: A mediator plane is a plane in which every point in it is equidistant from two extremities of a given segment.

Дрр-4:

Consider the regular tetrahedron SABC, and I the midpoint of [CD].

- 1) Draw a figure.
- 2) Prove in two different ways that *SBI* is a mediator plane of [*CD*]

1^{st} – way	2^{nd} – way

ConclusionTo prove that (P) mediator plane for a segment [AB], it is enough to show
that:
 1^{st} - way: Three points
 2^{nd} - way: The plane (P) is:
-

/ (Δ)

Sd