AlMandi High Schools (Al-Fadath)	Mathematics	11th_Grade
Name:	"Orthognafity "	A.S-11.

Name:
"Orthognality "
A.S-11.

Collinearity in space

Property: To prove that three distinct points in space are collinear, it is enough to show that these points belong to two distinct planes.

App-1:

In the tetrahedron $A B C D$, let $E \& F$ be any two points on $(B D) \&] C D$ [respectively, so that $(E F) \&(B C)$ intersect at G. Let H be any point on $] A D[$ such that $I \& K$ are the respective intersection points of $(E H) \&(A B)$ and $(F H) \&(A C)$.

1- Determine the straight line $(\Delta)=(A B C) \cap(E F H)$
\qquad
\qquad
\qquad
\qquad
\qquad
2- Deduce that the points $G, I \& K$ are collinear.
\qquad
\qquad
\qquad

Angle between two lines

App-2:

In the adjacent figure $S A B C$ is a tetrahedron, where $D, K \& L$ are the respective midpoints of sides $[A S],[C S] \&[B S]$ and $A \hat{B} C=40^{\circ} \& A \hat{C} B=70^{\circ}$
1- What is the relative position of

$(B C) \&(L K) ?$...
$(K D) \&(A C) ?$..
$(A C) \&(D L) ?$	

3- What do you conclude?

App-3: Orthogonal lines

Def: Two lines are orthogonal iff the included angle is $\frac{\pi}{2}$
Eg:

St.lines	Intersection	Angle	Perpendicular	Orthogonal
$(C D) \&(C B)$	B	$\frac{\pi}{2}$	\checkmark	\checkmark
$(C D) \&(A E)$	\emptyset	$\frac{\pi}{2}$		\checkmark

Use the paving stone $A B C D E F G H$ where $R \& N$ are the respective midpoints of $[E H] \&[B C]$ to complete the table

Perpendicular	Justification	Orthogonal	Justification
$(A B) \perp$		$(A B) \perp$	
$(A B) \perp$		$(A B) \perp$	
$(A B) \perp$		$(A B) \perp$	
$(N R) \perp$		$(N R) \perp$	
$(N R) \perp$		$(N R) \perp$	

Comelusions: Two straight lines are:

- Orthogonal if: \qquad
- Perpendicular if:

I Two perpendicular lines are always intersecting.

$\underline{\boldsymbol{E} \boldsymbol{x}}:$ In the adjacent figure, $C(O, O E)$ is in plane (P). Trace $(R N)$ the perpendicular bisector of $[O E]$ in $(P) \&(\Delta)$ the perpendicular to (P) at E.

1) Complete figure.
2) Prove that $(R N)$ is orthogonal to $(F O)$, where $F \in(\Delta)$

Line orthogonal to a plane in space

	Definition	Proof
Analytically	A line is perpendicular to a plane if it is orthogonal to every line subset of this plane.	To prove that a line is perpendicular to a plane, it is enough to show that this line is orthogonal to two intersecting lines subset of this plane.
Geometrically		

App-3:

Consider the cube $A B C D E F G H$.

1) Show that:
a. $(A E)$ is perpendicular to $(B C D)$.
\qquad

$$
\text { b. }(G H) \text { is perpendicular to }(A D E)
$$

\qquad

2) Deduce that:
i. $\quad(A E) \perp(B D)$.
\qquad
ii. $(G H) \perp(E D)$
3) Prove that $(A E)$ is perpendicular to $(F G H)$.
\qquad
\qquad
4) What is the relative positions of the planes: $(B C D) \&(F G H)$
\qquad
\qquad

Properties

Consider $A B C$ to be a right isosceles triangle at A in a plane (P). Let S be a point on straight line (Δ) the perpendicular to (P) at A.

1) Prove that $(A B)$ is perpendicular to $(S A C)$
\qquad
\qquad
\qquad
2) Show that the triangles $S A B \& S A C$ are congruent.

\qquad
\qquad
\qquad
3) Deduce the nature of the triangle $S B C$.
\qquad
\qquad
\qquad
\qquad
\square
If a point S belongs to (Δ), the Perpendicular to (P) at A, where A is equidistant from $B \& C$ in (P) then S is equidistant from $B \& C$ and vice versa.
4) Let I be the midpoint of $[B C]$. Show that $(B C)$ is perpendicular to the plane $(S A I)$
\qquad
\qquad
\qquad
\qquad
5) Plot N the orthogonal projection of A on $(S I)$. Prove that $(A N)$ is orthogonal to $(S B)$.
\qquad
\qquad
\qquad
\qquad

Mediator plane of a segment

REMINDER:

1) What does (Δ) represent in the adjacent figure?
2) Describe S with respect to $A \& B$. Justify.
\qquad
\qquad

Def:

A mediator plane is a plane in which every point in it is equidistant from two extremities of a given segment.

App-4:

Consider the regular tetrahedron $S A B C$, and I the midpoint of $[C D]$.

1) Draw a figure.
2) Prove in two different ways that $S B I$ is a mediator plane of $[C D]$

$1^{\text {st }}-$ way	$2^{\text {nd }}-$ way

[^0]
[^0]: To prove that (P) mediator plane for a segment $[A B]$, it is enough to show that:
 Conclusion ${ }^{1^{\text {st }}}$ - way: Three points \qquad
 $2^{\text {nd }}$ - way: The plane (P) is:

