
(4) Focusing event: Translate (slide or move)the below items following the specified instructions:

Find the elements needed to translate triangle $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$?
\Rightarrow Intoducion: A translation "slides" an object a fixed distance in a given direction. The original object and its translation have the same shape and size, and they face in the same direction.
$\stackrel{\mu}{\wedge}$ If a point A moves towards another point B which are $5 m$ apart and back then,
is A moves a total distance of:
is The displacement of A is:

Definition of a vector:

A vector \vec{u} or $\overrightarrow{A B}$ is an oriented segment having two extremities, an origin and an end point.

4. Properties of a vector:

In elementary mathematics, a vector is a geometric object defined by its properties:
a) Direction: the st. line that holds $\overrightarrow{A B}$ or any st. line parallel to $(A B) ;$ e.g. vertical, along (d)...
6) Sense: orientation from an initial point to a final point; e.g. left to right or from pt A to $B \ldots$
c) $\mathcal{M a g n i t u d e}$: length (modulus) or norm $\|\overrightarrow{A B}\|$ of the given vector.

Representation of a vector: A vector is frequently represented by a segment with a definite direction, or graphically as an arrow, connecting an initial point A with a terminal point B, and denoted by: $\overrightarrow{A B}$

ヶ. How to locate a point using a vector?

To locate a point \boldsymbol{B} the translate of $A(1 ;-2)$ knowing coordinates of $\overrightarrow{A B}(-3 ; 4)$ follow one)
\square Plot the given point \boldsymbol{A}.
If $\underset{A B}{ }=-3$, then $\left\{\begin{array}{l}\text { 1. Direction : Parallel to } x \text {-axis. } \\ \text { 2. Sense : Move to the left. } \\ \text { 3. Magnitude:3-units. }\end{array}\right.$

1. Direction : Parallel to y-axis.

If $y_{\overrightarrow{A B}}=+4$, then
2. Sense: Move upwards.
3. Magnitude:4-units.

Finally, plot point B.

\Rightarrow Special vector:

¢) Equalvectors:

Analytic approac	Geometric approach	Conclusion
Any two vectors \vec{u} and \vec{v} are equal iff they admit: - Same direction. - Same sense. - Same magnitude.		Therefore, vectors \vec{u} and \vec{v} are equal.

Significance of equal vectors:

a. If $\overrightarrow{A B}=\overrightarrow{C D}$, then C is the fourth vertex of the parallelogram $A B D C$.

Conversely: If $A B D C$ is a parm then, $\overrightarrow{A B}=\overrightarrow{C D}$.
b. If $A B=C D$, then the points A, B, C and D are collinear.

कt Properties of equal vectors:

If $\overrightarrow{A B}=\overrightarrow{C D}$, then the segments $[A D]$ and $[B C]$ have the same midpoint.

4) Opposite Vectors: Opposite and equal vectors admit same significance and properties.

Analytic approach	Geometric approach	Conclusion
Any two vectors \vec{u} and \vec{v} are opposite if they have: - Same direction. - Same magnitude. - But opposite senses.		Therefore, \vec{u} and \vec{v} are opposite .

Types of vectors:

	Free vectors	Vectors of the same origin	Consecutive Vectors	
Definition	Are vector having neither a common origin nor common extremity.	Are vector having a common origin only.	Are vectors having the extremity of the first as the origin of the second.	
Geometric approach				

Sum of two vectors:

There are two main methods to add two or more vectors having the same coefficients:

	$1^{\text {st }}$ - Method	$2^{\text {nd }}$ - Method
	Parallelogram Rule	Chasles'Rule
U sed	If vectors have the same origin	If vectors are consecutive
Method	Complete the parallelogram	Join the first origin to the last extremity.
Grapfical representation		
Analytical approach	The sum of two vectors with same origin; is a vector with same origin and its extremity is the fourth vertex of the parm. $\overrightarrow{R F}+\underline{R} K=\underline{R} \underbrace{\vec{N}}_{\text {4thVertex }}$	The sum of two consecutive vectors; is a vector with orgin of $1^{\text {st }}$ and extremity of the last. $\overrightarrow{\overrightarrow{A B}}+\overrightarrow{B C}=\underline{\underline{A}} \underline{\underline{C}} .$

	\mathcal{H} ow to find the Image or translation of some geometric figures	
Figures	Procedure	Graphical representation
Lines	To translate a line, translate any two points on this line.	
Segments	To translate a segment, translate its extremities.	
Triangles	To translate a triangle, translate its vertices	
Circles	To translate a circle, translate its center and keep the same radius	

5) Properties of translation:

4) Xidpoints and Vectors:

If I is the midpoint of $[A B]$ then;

	Analytic approach	Graphical representation
is	$\overrightarrow{A I}=\overrightarrow{I B}$	A - \longrightarrow ¢
is	$\overrightarrow{I A}+\overrightarrow{I B}=\overrightarrow{0}$	A0¢ , i, $\rightarrow 0 \mathrm{~B}$
is	$\overrightarrow{A B}=2 \overrightarrow{A I}$	
*	$\overrightarrow{A B}=2 \overrightarrow{I B}$	

is Conversety:

$$
\text { If }\left\{\begin{array}{l}
\overrightarrow{A I}=\overrightarrow{I B} \\
\overrightarrow{I A}+\overrightarrow{I B}=\overrightarrow{0} \\
\overrightarrow{A B}=2 \overrightarrow{A I} \\
\overrightarrow{A B}=2 \overrightarrow{I B}
\end{array}\right\} \text { then, } \boldsymbol{I} \text { is the midpoint of }[\boldsymbol{A B}]
$$

\checkmark Use one of the above vector relations to determine the coordinates of the midpoint.

4) Xedians and Vectors:

If $[A N]$ is a median relative to $[B C]$ then; $\overrightarrow{A B}+\overrightarrow{A C}=2 \vec{A} N$.

is Conversely: If $\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A N}$ then, $[\boldsymbol{A N}]$ is the median relative $[\boldsymbol{B C}]$.
is Genreralfy: If A is any point in the plane and M is the midpoint of $[B C]$ then we write:

$$
\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A M}
$$

\checkmark Use Chasle's rule for sum of consecutive vectors to prove the above vector relation.

Page 5 of 6

²) Centroid and Vectors:

If \boldsymbol{G} is the center of gravity (Centroid) of triangle $\boldsymbol{A B C}$ then, $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.

it Conversely: If $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$ then; \boldsymbol{G} is the center of gravity of triangle $\boldsymbol{A B C}$.

(4) Vectors and Coordinate system:

In a reference plane any vector $\overrightarrow{A B}$ has two coordinates:
To find coordinates of a vector $\overrightarrow{A B}$, use the following relations:

$$
X_{\overrightarrow{A B}}=x_{B}-x_{A}
$$

To determine coordinates of $G\left(x_{G} ; y_{G}\right)$ the center of triangle ABC use the following relations:

$$
y_{G}=\frac{y_{A}+y_{B}+y_{C}}{3}
$$

Use properties of centroids to prove the above relations.

