Al Mahdi High Schools (Al-Hadath) Name:

Mathematics

"Vectors in Space"

Reviewing Vectors

App-1:

The adjacent figure is a rectangular prism ABCDEFGH, where I & J are the respective midpoints of [AB] & [BC].

1) Observe the adjacent figure and complete the following table with the most convenient data.

11th-Grade

A.S-13.

Determine	Answers in vector form	Definitions and Conclusions
Zero vectors		
Collinear vectors		
Equal vectors		
Opposite vectors		
The sum: $\overrightarrow{AF} + \overrightarrow{DC} + \overrightarrow{FD}$		
The sum: $\overrightarrow{DE} + \overrightarrow{DC}$		
The sum: $\overrightarrow{AE} + \overrightarrow{BD} + \overrightarrow{HG}$		

- 2) Are the properties of vectors in space preserved?
- 3) If $\vec{u} & \vec{v}$ are any two non-zero vectors and α is any real number, then what does the vector equality, $\vec{u} = \alpha \vec{v}$, tell you about the vectors $\vec{u} & \vec{v}$, <u>discuss</u>.

.....

- 4) Consider the reference frame $(A, \overrightarrow{AB}, \overrightarrow{AD})$
 - a. Find the coordinates of the points A, B & J and the vector \overrightarrow{AC}

.....

-
- b. Determine the equation of the straight line (d) defined by: (B, \overrightarrow{AC}) (*use vectors*)
-
- c. Do vectors $\overrightarrow{AC} \& \overrightarrow{IJ}$ form a base? Justify.

Property: All properties of plane geometry are applied in space geometry.

Coplanar Vectors

Definition: Three vectors $\vec{u}, \vec{v} & \vec{w}$ are coplanar *iff*: > One of the vectors can be written as a linear combination of the other two vectors: $\vec{w} = \alpha \vec{u} + \beta \vec{v}$, where $\alpha & \beta$ are real.

App-2:

ABCDEFGH is a cube of side 4cm, where K is the center of ABCD, N is the midpoint of [AB]

and $\overrightarrow{AR} = \frac{1}{4}\overrightarrow{CG}$	
1) Trace the figure and <i>complete whenever needed</i> . 2) Prove that: $\overrightarrow{EG} = \overrightarrow{AB} + \overrightarrow{AD}$	
3) Are the vectors \overrightarrow{EG} , \overrightarrow{AB} & \overrightarrow{AD} coplanar? Justify.	
4) Are the vectors \overrightarrow{AF} , \overrightarrow{AR} & \overrightarrow{AN} coplanar? Justify	
5) Show that \overrightarrow{DE} is parallel to the plane (BCG) a. Prove that: $\overrightarrow{DE} = \alpha \overrightarrow{CG} + \beta \overrightarrow{BC}$. Where $\alpha \& \beta$ are	
 b. What can you say about the vectors DE, CG & BC c. Are the vectors NK, EH & EG coplanar? Justify. d. What do you conclude? Def: Three vectors u, v & w are coplanar iff: 7	· · · · · · · · · · · · · · · · · · ·
6) Can you find a way to prove that the four points <i>E</i>	G & K are coplanar
6) Can you find a way to prove that the four points <i>B</i>	, D, G & K are coplanar

Base & system in space

Definition: If $\vec{i}, \vec{j} \& \vec{k}$ are any three non-zero and non-coplanar vectors then, all triples $(\vec{i}, \vec{j}, \vec{k})$ is called a base in space. Hence $(O, \vec{i}, \vec{j}, \vec{k})$, is called a system in space, where O is the origin.

App-3:

Consider the	Rectangle prism ABCDEFGH	Cube ABCDEFGH
Questions	3 Z F G C D Z	
Do the vectors \overrightarrow{AB} , \overrightarrow{AD} & \overrightarrow{AE}		
form a system in space?		
Determine the type of the system		
$(B, \overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BF})$		
Determine the coordinates of:		
$A, D, G \& H; \overrightarrow{BD}, \overrightarrow{FH} \& \overrightarrow{CE}$		
Write in analytic form:		
$\overrightarrow{BH}, \overrightarrow{BG} \& \overrightarrow{BE}$		

App-4: Consider the tetrahedron *ABCD* and the points I, J, K & L defined by:

$$\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}, \ \overrightarrow{CJ} = \frac{1}{3} \overrightarrow{CB}, \ \overrightarrow{DK} = \frac{1}{4} \overrightarrow{DC} \& \ \overrightarrow{DL} = \frac{1}{5} \overrightarrow{DA}.$$
1) Draw figure and place the points.
2) Calculate the coordinates of the points $I, J, K \& L$ in
the system $\left(A; \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\right).$
3) Show that the points $I, J, K \& L$ are non-coplanar.

Riminders

If A(1;2;3) & B(-2;3;1) are any two points and $\vec{v}(1,-1,3)$ is a vector in space then:

- 1) The coordinates of *AB* are: 2) The norm of \overrightarrow{AB} is: $\left\|\overrightarrow{AB}\right\| = \dots$
- 3) Are $\overrightarrow{AB} \& \overrightarrow{v}$ collinear?
- 4) Determine the angle formed between the straight lines (AB)&(l) of director vector v.

Equation of a st. line in space

App-5: Find the parametric equations of the straight (*d*)passing through the point A(-1;2;3) and of directing vector $\vec{v}(2,-1,1)$.

.....

Equation of a plane

App-6:

Let A, B & C be any three non collinear points and $M(x, y)$ be any point.			
1- Can the points A, B & C determine a plane? Justify.			
2- What is the geometric meaning of the following vector equations?			
a) $\overrightarrow{AM} = k \overrightarrow{AB}$, where $k \in \mathbb{R}$			
b) $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$, where $\alpha \& \beta \in \mathbb{R}$.			
3- Determine the set of points <i>M</i> so that:			
a. $\overrightarrow{AM} = k \overrightarrow{AB}$, where $k \in \mathbb{R}$.			
b. $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$, where $\alpha \& \beta \in \mathbb{R}$.			
4- What do you need to find equation of a straight line?			
5- Is it true that a plane can be determined by a point and any two vectors?			
5- is it the that a plane can be determined by a point and any two vectors?			