9 Lycée Des Arts \quad Mathematics \quad 9 \quad th_Grade

Introduction

The Cat to the right is an enlargement of the one to the left. They are exactly of the same shape, but they are $\mathcal{N O}$ Ot of the same size. These cats represent simifar figures.

Ofjects, such as the above two cats, that have the same shape, but do not have the same size, are called 'similar'.

Definition: In mathematics, two triangles are said to be similar if their corresponding (matching) angles are congruent and the ratios of their corresponding sides are proportional.

Consider the two triangles $A B C$ \& $D E F s$

Comparing elements of the above triangles				
Angles	Ratios of sides			
$\hat{A} \cong \hat{D}$	$\frac{A B}{D E}=\frac{10}{20}=\frac{1}{2}$			
$\hat{B} \cong \hat{E}$	$\frac{A C}{D F}=\frac{7}{14}=\frac{1}{2}$			
$\hat{C} \cong \hat{F}$	$\frac{B C}{E F}=\frac{6}{12}=\frac{1}{2}$		$\} \Rightarrow \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=\frac{1}{2} \quad$	This ratio is the
:---:				
Scale Factor				
\boldsymbol{K}	\quad	\quad		
:---:				

Therefore; Triangles $\boldsymbol{A B C}$ and $\boldsymbol{D E F}$ are similar.

In spmbols:

Strategies for Proving Triangles Similar

To show that two triangles are similar, it is sufficient to use one of the following cases:

CASE-1: Two angles, postulate

> | AA $\begin{array}{l}\text { If two angles of one triangle are congruent (equal) to two angles of } \\ \text { the other triangle, then the two triangles are similar. }\end{array}$ |
| :--- |

In the two triangles $A B C \& P M N$ we have:
1- $A \hat{B} C=P \hat{M} N$
2- $B \hat{C} A=M \hat{N} P$
Hence, $\triangle A B C \sim \triangle P M N$, by " $\boldsymbol{A A}$ " postulate.

Ratio of similitude:

$$
\begin{array}{l|l}
A B C & \frac{A B}{P M N}=\frac{A C}{P N}=\frac{B C}{M N}=K
\end{array}
$$

CASE-2: Side - side angle inside, postulate:

SASIf an angle of one triangle is equal to an angle of the other triangle and the two adjacent sides of these angles are proportional, then the two triangles are similar.

In the two triangles $B C D \& F G H$ we have:

$$
1-\frac{B D}{F H}=\frac{4}{2}=2
$$

2- $B \hat{D} C=F \hat{H} G=75^{\circ}$
3- $\frac{C D}{G H}=\frac{3.4}{1.7}=2$
Hence, $\triangle B C D \sim \triangle F G H$, by "S A S" postulate.

Ratio of similitude:

CASE-3: Side - side - Side, postulate:

$$
\text { SSS } \begin{aligned}
& \text { If three sides of one triangle are proportional to three sides of the } \\
& \text { other triangle, then the two triangles are similar. }
\end{aligned}
$$

In the two triangles $A B C \& R N K$ we have:
1- $\frac{A B}{R N}=\frac{2.71}{5.42}=\frac{1}{2}$
2- $\frac{A C}{R K}=\frac{2}{4}=\frac{1}{2}$
3- $\frac{B C}{N K}=\frac{3}{6}=\frac{1}{2}$

Hence, $\triangle A B C \sim \triangle R N K$, by "SSS" postulate.
Ratio of similitude:

$$
\begin{array}{l|l}
A B C & \frac{A B}{R N}=\frac{A C}{R K}=\frac{B C}{N K}=\frac{1}{2}=K
\end{array} \quad \begin{gathered}
\text { Reduction Factor } \\
\text { Since } K<1
\end{gathered}
$$

How to Find Similarity Ration $\left\lvert\, \frac{A B}{P M}=\frac{A C}{P N}=\frac{B C}{M N}=K\right.$
To find similarity ratio:

1. Match pairs of corresponding sides.
2. Match pairs of corresponding angles.
3. Divide matched pairs of corresponding sides and angles to get your ratio.

Attention!!!

The scale factor K is said to be a ratio of:

Case	Condition (if)
Enlargement	$K>1$
Reduction:	$K<1$
Congruency:	$K=1$

Why similar triangles?
We use similar triangles to:
a) Find missing lengths.
b) Find the enlargement or reduction of an object.
c) Find an algebraic relation between sides of two triangles.
d) Find height of tall objects such as trees, buildings...

Interesting Ratios to Study in Similar Triangles

1. Ratio of Perimeters, Altitudes, Medians, and Angle Bisectors

If two triangles are similar, then their corresponding sides, altitudes, medians, angle bisectors and perimeters are all divided in the same ratio.
In other words, we can always include ratios of altitudes, medians, angle bisectors and perimeters in ratio of similitude.
In a mathematical statement,

$$
\text { If } \frac{s_{1}}{s_{1}}=\frac{s_{2}}{s_{2}^{\prime}}=\frac{s_{3}}{s_{3}^{\prime}}=k \text { then } \frac{h}{h^{\prime}}=k
$$

Example-1:

Consider the triangles $A B C$ \& $D E F$.
Find the ratio of their altitudes.
Answers: $\frac{A G}{D H}=\frac{5}{4}$.

Example-2:

The ratio of sides of the two similar triangles $A B C$ \& $D E F$ is $4: 9$.
a) What does the ratio 4:9 represent? Justify.
b) What is the ratio of their perimeters?

Answers: a) Ratio of reduction. b) $4: 9$

2. Ratio of Areas

Conclusion:
If two triangles are similar, then the ratio of their areas is equal to the square of the ratio of their corresponding sides.

In a mathematical statement,

Metric relations in Similar Right Triangles

The right triangle is an amazingly rich geometric structure, with a multitude of relations between its elements.
Goal: Metric relations allow us to find missing measures in similar right triangles.
Height- Hypotenuse relation:
\checkmark From the two similar triangles $A B H \& A B C$, we can write:

Formal way		Inform
	$B C \times A H=A B \times A C$	
Hule : $a \times h=b \times c$.	Rule : hyp.height = leg $\mathrm{l}_{1} \cdot \mathrm{leg} 2$	

Geometric Means (Atlean Z13roportional):

Ta BEWARE: The product of means equals the product of extremes.	$\frac{\text { extreme }}{\text { mean }}=\frac{\text { mean }}{\text { extreme }}$	In a mean proportional problem, "means" are the same values

1- The altitude relative to the hypotenuse of a right triangle is the geometric mean (mean proportional) of the two segments of the hypotenuse.
\checkmark From the two similar triangles $A B H \& A C H$, we can write:

Formal way				Informal way	
ABH CAH 	$\frac{A B}{C A}=\frac{A H}{C H}=\frac{B H}{A H} \Rightarrow A H^{2}=C H \times B A$		$\frac{B H}{A H}=\frac{A H}{C H}$		
rute : $h^{2}=m \times n$.			$\text { Altitude Rule: } \frac{\text { part of hyp }}{\text { altitude }}=\frac{\text { altitude }}{\text { Other part of hyp }}$		

2- The length of a leg of a right triangle is the geometric mean of the lengths of the hypotenuse and the projection of this leg on the hypotenuse.
i - From the two similar triangles $A B H \& A B C$, we can write:

Formal way				Informal way
$\left\lvert\, \begin{array}{c\|c} A B H \\ C B A & \frac{A B}{C B} \\ 1 & \frac{A H}{C A} \\ 2 \end{array}=\frac{B H}{B A} \Rightarrow A B^{2}=B H \times B C\right.$	$\frac{A B}{C B}=\frac{A H}{C A}=\frac{B H}{B A} \Rightarrow A B^{2}=B H \times B C$		$\frac{B C}{A B}=\frac{A B}{B H}$	
	Hule:	$n \times a$.	Leg Rule: hypo $\text { OR } \quad \text { leg }_{1}^{2}=\text { hypo }$	$\frac{\text { use }}{}=\frac{\text { leg }_{1}}{\text { projection }}$ use \times projection.

$i i$ - From the two similar triangles $A C H \& A B C$, we can write:

Formal way				Informal way
$\left\lvert\, \begin{array}{l\|l\|} A C H \\ B C A & \frac{A C}{B C}=\frac{A H}{B A} \\ 1 & \frac{A H}{C A} \\ \frac{C H}{3} \end{array} \Rightarrow A C^{2}=C H \times B C .\right.$	$\frac{A C}{B C}=\frac{A H}{B A}=\frac{C H}{C A} \Rightarrow A C^{2}=C H \times B C .$		$\frac{B C}{A C}=\frac{A C}{C H}$	
Rutle : $b^{2}=m \times a$.			$\begin{aligned} & \text { Leg Rule: hypc } \\ & \text { OR } \text { leg }_{2}{ }^{2}=\text { hyp } \end{aligned}$	$\frac{\text { neg }_{2}}{3_{2}}=\frac{\text { lejection }^{\text {proje }}}{\text { an }}$ nuse \times projection.

The Magic of Similar Right Triangles All in One

\checkmark A proof of Pythagorean theorem:

$$
\left.\begin{array}{ll}
\hline \hline \text { In } \triangle A B C \text { we have: } \quad \begin{array}{rl}
a^{2} & =m . c \\
b^{2} & =n . \ldots . . .(1)
\end{array} \quad(\text { Geomtric mean }) \\
a^{2}+b^{2}=n . c+m . c & (\text { Geomtric mean })
\end{array}\right\} \text { Add (1) \& (2) to get : }
$$

Real life problems involving similar triangles

Find the height, h, in the following diagram at which the tennis ball must be hit so that it will just pass over the net and land 6 m away from the base of the net.

To find the height, h, of a tree or any tall object we use similar triangle techniques:

$1^{\text {st }}$ - Technique	$2^{\text {nd }}-$ Technique

1- Allow your shadow and the shadow of the tall object to coincide.
2- Measure your height or any reference.
3- Measure distance between you and point of coincidence.
4- Measure distance between object and point of coincidence.
5- Use similar triangles to find ratio of measurements.

1- Set a mirror between you and the tall object to measure.
2- Move back till you can see the tip of the tall object in the mirror.
3- Measure your height or any reference.
4- Measure distance between you and the mirror.
5- Measure distance between object and the mirror.
6- Use similar triangles to find ratio of measurements.

