

Mathematics " Similar Triangles " 9th-Grade A.S-13.

Introduction

The Cat to the right is an enlargement of the one to the left. They are exactly of the *same* shape, but they are *NOT* of the same *size*.

These cats represent *similar figures*.

Objects, such as the above two cats, that have the same shape,

but do not have the same size, are called 'similar".

Definition: In mathematics, two triangles are said to be *similar* if their corresponding (matching) angles are *congruent* and the *ratios* of their corresponding *sides* are *proportional*.

Consider the two triangles ABC & DEF

Compa			
Angles	Ra	tios of sides	
$\hat{A} \cong \hat{D}$	$\frac{AB}{DE} = \frac{10}{20} = \frac{1}{2}$		This set is is the
$\hat{B} \cong \hat{E}$	$\frac{AC}{DF} = \frac{7}{14} = \frac{1}{2}$	$\Rightarrow \frac{AB}{DF} = \frac{AC}{DF} = \frac{BC}{FF} = \frac{1}{2}$	Scale Factor
$\hat{C} \cong \hat{F}$	$\frac{BC}{EF} = \frac{6}{12} = \frac{1}{2}$		

Therefore; Triangles ABC and DEF are similar.

In symbols: $\triangle ABC \sim \triangle DEF$

Mathematics A.S-13. Similar Triangles

Strategies for Proving Triangles Similar

To *show that* two *triangles* are *similar*, it is sufficient to use one of the following cases:

<u>CASE-1</u>: Two angles, postulate

AA If *two angles* of one triangle are congruent (*equal*) to *two angles* of the other triangle, then the two triangles are similar.

In the two triangles *ABC* & *PMN* we have:

1- $A\hat{B}C = P\hat{M}N$

2-
$$B\hat{C}A = M\hat{N}P$$

Hence, $\triangle ABC \sim \triangle PMN$, by "AA" postulate.

Ratio of similitude:

ABC	AB	AC	BC = k
PMN	PM	\overline{PN}	$-\frac{1}{MN}$

3.4

75

<u>CASE-2</u>: Side – side angle inside, postulate:

SAS If an *angle* of one triangle is *equal* to an *angle* of the other triangle and the *two* adjacent *sides* of these angles are *proportional*, then the two triangles are similar.

In the two triangles *BCD* & *FGH* we have:

$$1 - \frac{BD}{FH} = \frac{4}{2} = 2$$

$$2-B\hat{D}C = F\hat{H}G = 75$$

 $3 - \frac{CD}{GH} = \frac{3.4}{1.7} = 2$

Hence, $\triangle BCD \sim \triangle FGH$, by "S A S" postulate.

Ratio of similitude:

4

9th Grade.

1.7

Mathematics A.S-13. Similar Triangles

<u>CASE-3</u>: Side – side – Side, postulate:

SSS If *three sides* of one triangle are *proportional* to *three sides* of the other triangle, then the two triangles are similar.

- 1. Match pairs of corresponding sides.
- 2. Match pairs of corresponding angles.
- 3. Divide matched pairs of corresponding sides and angles to get your ratio.

🗩 Attention!!!

 \Rightarrow The scale factor K is said to be a ratio of:

Case	Condition (if)
<u>Enlargement</u>	K>1
Reduction :	K<1
<u>Congruency</u> :	K=1

↔Why similar triangles?

We use similar triangles to:

- a) Find missing lengths.
- b) Find the *enlargement* or *reduction* of an object.
- c) Find an *algebraic relation* between sides of two triangles.
- d) Find *height of tall objects* such as trees, buildings...

Interesting Ratios to Study in Similar Triangles

1. Ratio of Perimeters, Altitudes, Medians, and Angle Bisectors

If two triangles are **similar**, then their corresponding sides, altitudes, medians, angle bisectors and perimeters are all divided in the same ratio.

In other words, we can always include ratios of *altitudes*, *medians*, *angle bisectors* and *perimeters* in ratio of similitude.

In a mathematical statement,

If
$$\frac{s_1}{s_1} = \frac{s_2}{s_2} = \frac{s_3}{s_3} = k$$
 then $\frac{h}{h'} = k$

2. Ratio of Areas

Conclusion:

If two triangles are **similar**, then the ratio of their *areas* is equal to the *square* of the ratio of their corresponding sides.

In a mathematical statement,

If
$$\frac{s_1}{s_1} = \frac{s_2}{s_2} = \frac{s_3}{s_3} = k$$
 then $\frac{Area of \Delta_1}{Area of \Delta_2} = k^2$

9th Grade.

Mathematics A.S-13. Similar Triangles

Page 4 of 7

Metric relations in Similar Right Triangles

The right triangle is an amazingly rich geometric structure, with a multitude of relations between its elements.

Goal: Metric relations allow us to find missing measures in similar right triangles.

Height- Hypotenuse relation:

✓ From the two similar triangles *ABH* & *ABC*, we can write:

- 1- The altitude relative to the hypotenuse of a right triangle is the geometric mean (mean proportional) of the two segments of the hypotenuse.
- \checkmark From the two similar triangles *ABH* & *ACH*, we can write:

Formal way

$$\begin{array}{c}
 Informal way
 \end{array}$$

$$\begin{array}{c}
 Informal way
 \end{array}$$

$$\begin{array}{c}
 ABH \\
 CAH \\
 LAH \\$$

2- The length of a leg of a right triangle is the geometric mean of the lengths of the hypotenuse and the projection of this leg on the hypotenuse.

i- From the two similar triangles *ABH* & *ABC*, we can write:

ii- From the two similar triangles *ACH* & *ABC*, we can write:

Find the height, h, in the following diagram at which the tennis ball must be hit so that it will just pass over the net and land 6 m away from the base of the net.

To find the height, h , of a tree or any tall object we use similar triangle techniques:				
1 st – Technique	2 nd – Technique			
x 5' 8' 0				
1- Allow your shadow and the shadow of the tall object to coincide	1- Set a mirror between you and the tall object to measure			
 Measure your height or any reference. Measure distance between you and point 	 2- Move back till you can see the tip of the tall object in the mirror. 			
of coincidence.4- Measure distance between object and point of coincidence.	 3- Measure your height or any reference. 4- Measure distance between you and the mirror. 5- Measure distance between object and the mirror. 			
5- Use similar triangles to find ratio of measurements.	6- Use similar triangles to find ratio of measurements.			

0.9 m

12 m