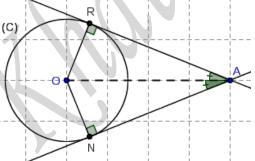

Lycée Des Arts Mathematics 8th-Grade Name: "The Four Tangent Theorems" Tangents to a circle through an exterior point

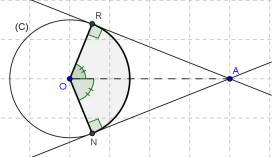
Let (C) be a circle of center O and radius rcm , where A is any	point in the plane.
1- How many tangents can be drawn from a point <i>A</i> :	
a) Inside the circle? c) Outside to	the circle?
b) On the circle?	
2- Let (T) be the tangent at a point A on the circle (C) of cen	ter O .
a. What is the value of the angle formed by the straight	
line(T) and the radius $[OA]$?	
b. Construct (T)	
	1 - 1cm
3- Let $A \& B$ be the points of intersection of the circles $s(O,3)$	cm)& $n(O',OO'=4cm)$.
a. Trace the circles and plot the points A & B.	
b. Plot P the symmetric of O with respect to O' .	
c. What do the angles $P\hat{A}O \& P\hat{B}O$ represent?	
d. Deduce the measure of $P\hat{A}O \& P\hat{B}O$.	
	1cm
4- Consider the circle $\psi(O,3cm)$ and the point A so that $OA =$	5 <i>cm</i>
a. Devise a method to trace the tangents $(T_1) & (T_2)$ from A to	
F	
b. What does each of the following represent:	
i. RÂN:	
ii. RÔN:	-+
iii. [RN]:	cm
c. Prove that: (AO) is the bisector of $R\hat{A}N$:	
•••••	
d. Deduce that $[OA)$ is the bisector of $R\hat{O}N$:	
e. What is the relative position of (OA) with respect to $[RN]$]?
· · · · · · · · · · · · · · · · · · ·	

If (AR) & (AN) are two tangents drawn from a point A to a circle (C) of center O at R & N resp. Then,

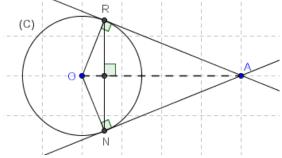
1. A is equidistant from the two points of tangencies R & N



2. Line joining point of intersection of the two tangents and center of (C) bisects:


a. The angle formed by the two tangents "[AR) & [AN]".

Or,[AO) is the bisector of the angle $R\hat{A}N$.


b. The central angle intercepting the arc formed by the two points of tangencies.

Or, [OA) is the bisector of the angle $R\hat{O}N$.

3. Line joining point of intersection of the two tangents and center of (C) is the perpendicular bisector of the chord joining points of tangencies.

 $Or_{\bullet}(OA)$ is the \perp bisector of [RN]

4. Line joining point of intersection of the two tangents and center of (C) is the axis of symmetry of the figure formed by (C) and the two tangents.