

- d) Count the number of choices.
- e) Can you device a way to find the number of possible choices without listing them? Explain....

III- Product principle :

There are three towns, P, Q & R, that are linked by roads as shown. How many different ways are there to get from *P* to *R* via*Q*?

.....

There are four towns, P,Q,R & S that are linked by roads as shown. How many different ways are there to get from P to S viaQ & R?

(1)

20 executives enter a room for a conference. Every person shakes hands with every other one. How many handshakes take place?

If each boy gives a gift to every other boy in the park, then find the number of gifts exchanged among 24 boys.

- *IV* The sum principle: Consider the road system from P to Q.
 - 1) How many path ways are there from:
 - a. A to C viaB?.....
 b. D to F viaE?....

- 2) Deduce in how many ways can you pass from *P* to *Q*.....
- 3) What does each of the following words suggest to the available possibilities?
 - a. And:b. Or:

Consider the following pathways:

Describe in words, the difference between the above pathways.(Don't find the numerical value)

.....

V- Counting techniques:

a) Counting with permutation:

A permutation of a group of n objects: is any arrangement of those n objects in a *definite order*.

b) Counting with combinations:

A combination is a selection of objects without regard to the order or arrangement.

How many teams of three can be selected from the set P =.

- c) *Arrangement*: we distinguish two cases
 - *i.* $(\mathcal{P} list)$: is an arrangement with repetition of a group of elements.
- $\mathcal{E}x$ -1: Consider the set $E = \{a, b, c\}$
 - a. Write all possible arrangements of *two elements* of set*E*. Repetition is allowed.

- In a couple form:
- In a tree form:

b. Deduce the number of formed arrangements. *Ex-2:The following questions are independent:*

- 1) Find the number of all:
 - a. 3-list out of 2 choices.
 - b. 5-list out of 3 choices.
- 2) What is the number of all expected outcomes, for throwing:
 - a. Three fair coins?
 - b. Two fair dices?
 - c. How many six digit secret combinations can you form, if all digits are numbers?
 - d. How many 4-digit numbers can be formed, using the elements of the set: $D = \{0, 1, 2, 3, 4\}$?

ii. Arrangement without repetition:

Summary of counting techniques:

Counting technique	Arrangement		Permutation	
	With repetition	Without	Without	Combination
	(p-list)	repetition	repetition	
Conditions	✓ Order is important.			\checkmark Order is not important.
	\checkmark Action is taken in succession.			✓ Simultaneous action
Number of		nl		A^r n
possibilities	n^{p}	$A_n^p = \frac{n!}{(n-n)!}$	$P_n = A_n^n = n!$	$C_n^p = \frac{n}{n} = \frac{n}{n!}$
(outcomes)		(n-p)!		$p_r r!(n-r)!$

Probability:

In a group of 18 students, eight are females. What is the probability of choosing five students where:

- 1. All girls?
- 2. Three girls and two boys are selected?
- 3. At least one boy is selected?

Solution:

The total number of outcomes, is the number of ways we can choose 5 out of the 18 students. So, $Card(\Omega) = A_{18}^5$

- a) Let A be the event of "picking up girls only". $Card(A) = A_8^5$ Thus, $P(A) = \frac{Card(A)}{card(\Omega)}$
- b) Let B be the event of "selecting 3 girls & 2 boys" $Card(B) = A_8^3 \times A_{10}^2$

Thus,
$$P(B) = \frac{Card(B)}{card(\Omega)}$$

c) Let C be the event of choosing " at least one boy". 1st method: $Card(C) = A_{10}^1 \times A_8^4 + A_{10}^2 \times A_8^3 + A_{10}^3 \times A_8^2 + A_{10}^4 \times A_8^1 + A_{10}^5 \times A_8^0$ 2nd method: Since A is the complement event of C so, P(A) + P(C) = 1