Focusing event:

1) 20 executives enter a room for a conference. Every person shakes hands with every other person. How many handshakes take place?
2) A committee of 4 is randomly chosen from 8 men and 7 women. What are the chances that two of each gender are chosen?

I- Couples:

Ex-1: Are the couples $(a ;-3) \&(-3 ; a)$ equal?
1- What is the type of the sets: $E=\{2,3\}$ and $F=\{3,2\}$.
2- Are the sets $E \& F$ equal? Justify
3- What is the difference between a couple and a pair set?

| $D e f$ | A couple denoted by $(x ; y)$, is an $\ldots \ldots \ldots \ldots \ldots .$. elements $x \& y$, where x
 is the $1^{\text {st }}$ element and y is $\ldots \ldots \ldots \ldots \ldots \ldots .$. the couple. |
| :--- | :--- | :--- | is the $1^{\text {st }}$ element and y is the couple.

Properties:

$$
\text { In set notation: } A \times B=\{(a ; b) \mid a \in A \& b \in B\}
$$

$$
\begin{aligned}
& \text { The couple }(x ; y)=(y ; x) \text { iff } x=y \\
& - \text { If }(x ; y)=(a ; b) \text {, then } x=a \& y=b \text { and vice versa. }
\end{aligned}
$$

II- Cartesian product:

Def
For all non-empty sets $A \& B$. The set of couples $(x ; y)$ where $x \in A \& y \in B$ is called the cartesian product of the sets $A \& B$.

Ex-2: Consider the sets $A=\{1,2,3\} \& B=\{$ blue, green $\}$.
Find the following Cartesian products:

1) $A \times B=$
2) $B \times A=$

$$
B \times B=
$$

$\operatorname{Card}(A \times B)=$
3) $A \times A=$
$\operatorname{Card}(A)=$
$\operatorname{Card}(B \times A)=$
$\operatorname{Card}(B)=$
$\operatorname{Card}(A \times A)=$

- Properties of cartesian product:

1- For all set $A \neq \operatorname{set} B$, then $A \times B$ \qquad $B \times A$
2- $\operatorname{Card}(A \times B)=\operatorname{Card}(B \times A)=$
3- If $A \times A$ is denoted by: A^{2}, then $A \times A \times A$ is denoted by:
$E x-3$: A basketball coach is trying Ali, Nader, Sami and Jamal for one of the following positions, forward, center and guard.

a) Write in extension the set of: - New players, $T=\{$

- Expected positions, $P=\{$
b) List all the possible choices for the coach as a couple $(x ; y)$, Where: x is the name of the player and y is the expected position.
c) Construct a tree diagram to show all possible choices (outcomes) of the coach:
d) Count the number of choices.
e) Can you device a way to find the number of possible choices without listing them? Explain.

III- Product principle :

There are three towns, $P, Q \& R$, that are linked by roads as shown.
How many different ways are there to get from P to R via Q ?

There are four towns, $P, Q, R \& S$ that are linked by roads as shown.
How many different ways are there to get from P to S via $Q \& R$?

20 executives enter a room for a conference. Every person shakes hands with every other one. How many handshakes take place?
\qquad
If each boy gives a gift to every other boy in the park, then find the number of gifts exchanged among 24 boys.
\qquad

Def	If there are m different ways to perform an operation, and for each of these there are n different ways of performing a second independent operation, then there are \qquad in succession.

IV- The sum principle:
Consider the road system from P to Q.

1) How many path ways are there from:
a. A to C via B ?
b. D to F via E ?

2) Deduce in how many ways can you pass from P to Q
3) What does each of the following words suggest to the available possibilities?
a. And:
b. Or:

Consider the following pathways:

Describe in words, the difference between the above pathways.(Don't find the numerical value)
\boldsymbol{V} - Counting techniques:
a) Counting with permutation:
Def
A permutation of a group of n objects: is any arrangement of those n objects in a definite order.
b) Counting with combinations:

A combination is a selection of objects without regard to the order or arrangement.

How many teams of three can be selected from the set $P=$.
c) Arrangement: we distinguish two cases
i. (\mathscr{P} - ist $)$: is an arrangement with repetition of a group of elements.

Ex-1: Consider the set $E=\{a, b, c\}$
a. Write all possible arrangements of two elements of $\operatorname{set} E$. Repetition is allowed.

- In a couple form:
- In a tree form:
b. Deduce the number of formed arrangements.

Ex-2:The following questions are independent:

1) Find the number of all:
a. 3-list out of 2 choices
b. 5-list out of 3 choices.
2) What is the number of all expected outcomes, for throwing:
a. Three fair coins?
b. Two fair dices?
c. How many six digit secret combinations can you form, if all digits are numbers?
d. How many 4-digit numbers can be formed, using the elements of the set: $D=\{0,1,2,3,4\}$?
ii. Arrangement without repetition:

Summary of counting techniques:

Counting technique	Arrangement		Permutation	Combination
	With repetition (p-list)	Without repetition	Without repetition	
Conditions	\checkmark Order is important. \checkmark Action is taken in succession.			\checkmark Order is not important. \checkmark Simultaneous action
Number of possibilities (outcomes)	n^{p}	$A_{n}^{p}=\frac{n!}{(n-p)!}$	$P_{n}=A_{n}^{n}=n!$	$C_{n}^{p}=\frac{A_{n}^{r}}{p_{r}}=\frac{n!}{r!(n-r)!}$

Probability:

In a group of 18 students, eight are females. What is the probability of choosing five students where:

1. All girls?
2. Three girls and two boys are selected?
3. At least one boy is selected?

Solution:

The total number of outcomes, is the number of ways we can choose 5 out of the 18 students. So, $\operatorname{Card}(\Omega)=A_{18}^{5}$
a) Let A be the event of "picking up girls only".
$\operatorname{Card}(A)=A_{8}^{5}$
Thus, $P(A)=\frac{\operatorname{Card}(A)}{\operatorname{card}(\Omega)}$
b) Let B be the event of "selecting 3 girls $\& 2$ boys"
$\operatorname{Card}(B)=A_{8}^{3} \times A_{10}^{2}$
Thus, $P(B)=\frac{\operatorname{Card}(B)}{\operatorname{card}(\Omega)}$
c) Let C be the event of choosing " at least one boy".
$1^{\text {st }}$ method: $\operatorname{Card}(C)=A_{10}^{1} \times A_{8}^{4}+A_{10}^{2} \times A_{8}^{3}+A_{10}^{3} \times A_{8}^{2}+A_{10}^{4} \times A_{8}^{1}+A_{10}^{5} \times A_{8}^{0}$
$2^{\text {nd }}$ method: Since Ais the complement event of C

$$
\text { so, } P(A)+P(C)=1
$$

