

Mathematics "Trigonometric Ratios"

Introduction:

The building of the Egyptian pyramids may seem to have little in common with modern sciences like *geophysics* & *seismology*. But certain principles of mathematics enter into all such activities. Many are used in the field of mathematics called *Trigonometry*.

A. What does Trigonometry do?

Trigonometry finds *relationships* between the *sides* and *angles* of a right triangle.

1- Find length of a side, establish identities

- **B.** Goals: 2- Determine the value of an acute angle between any two segments.
 - 3- Find the area of a triangle using an angle enclosed between two given sides.

Focusing events:

Figures	B Hypotenuse a C b A Right Angle		d h $h = d \cdot \tan(\phi)$
Questions	Label the sides of the above right triangle with respect to α	Find the exact height of the balloon from ground.	Do you know why it is better to step away from a TV screen?
Possible	a:		
answers	b:		

C. Defining the three main trigonometric ratios: $\sin \alpha; \cos \alpha; and \tan \alpha$.

Let *B* be the orthogonal projection of a variable point *A*, that belongs to ray [oy), on [ox). Where $x \hat{o} y = \alpha$, if [AB] varies in a way that it remains perpendicular to [ox), then prove that

1) $\frac{OB}{OA} = \frac{OB_1}{OA_1} = \frac{OB_2}{OA_2} = cst$	A1 A1
2) $\frac{AB}{OA} = \frac{AB_1}{OA_1} = \frac{AB_2}{OA_2} = cst$	ο B B ₁ B ₂ x

✓ If points *A* & *B* move again, will the ratios remain the same?

✓	When will these ratios alter?		
		If α is constant then, the ratio of:	
C	onclusions:	✤ Adjacent to hypotenuse	
		✤ to hypotenuse remains	

Trigonometric line	Figure	Formula	How to remember
Sine	A O P p o s i t e	$\sin A\hat{O}B = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{AB}{OA}$ IN SHORT $\sin \alpha = \frac{Opp}{hyp}$	Soh
Cosine	Hypotenuse O Adjacent B	$\cos A\hat{O}B = \frac{Adjacent}{\text{Hypotenuse}} = \frac{OB}{OA}$ IN SHORT $\cos \alpha = \frac{adj}{hyp}$	Cah
Tangent	A O P P O S i t e	$\tan A\hat{B}C = \frac{Opposite}{Adjacent} = \frac{AB}{OB}$ IN SHORT $\tan \alpha = \frac{Opp}{Adj} \text{ or } \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	Toa OR tsc

D. Fundamental trigonometric identities relating:

9th Grade.

Mathematics A.S-14. Trigonometric relations in right triangles

Page 2 of 4

Consider the right triangle ABC of hypotenuse [AC]

- 1) Indicate the sum of $\alpha \& \beta$:
- 2) What do we call $\alpha \& \beta$:
- 3) Determine in terms of sides:

$\sin \alpha =$	$\cos\beta =$
$\sin\beta =$	$\cos \alpha =$

4) Compare obtained results:

Conclusions: If $\alpha \& \beta$ are complementary angles, then

- E. Remarkable angles:
 - a)Use y

our calculator to	o complete:				
Angle (α) Ratios	0°	30°	45°	60°	90°
$\sin \alpha$			$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2} = 1$
$\cos \alpha$				$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{0}}{2} = 0$
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞
$\cot \alpha$					

Complementary

Angles

b)Can you device a method to memorize the above values in ease? Try.

c)Use the above table to complete if $\alpha \& \beta$ are two angles ($\alpha + \beta = 90^{\circ}$) then,

 $\overline{\cot \alpha} \times \cot \beta = \dots$

 $\tan \alpha \times \dots = 1$

- F. Area of a triangle in a different way. (Using sine of the angle enclosed between two sides):
 - 1) Indicate the area of the triangle *ABC*.....
 - 2) Find sin α
 - 3) Determine the area of ABC independent of h.
 - 4) Can you find the area of *ABC* as a function of $a, c \& \beta$.
- 5) Compare obtained results:

The area of a triangle is equal to one-half the product of two sides and the **Conclusions:** sine of the contained angle.

In symbols:

<u> </u>	
$\left\ \right\ _{Area} = ab\sin a$	$\alpha _ ac \sin \beta$
$ \frac{Area}{2}$	2

G. Bounding (Framing)trigonometric ratios:

In words	<i>sine</i> and <i>cosine</i> ratios of an <i>acute angle</i> are bounded between 0 and 1		<i>tangent</i> and <i>cotangent</i> ratios of an <i>acute angle</i> are greater than zero	
In symbols	$0 \le \sin \alpha \le 1$	$0 \le \cos \alpha \le 1$	$\tan \alpha \ge 0$	$\cot \alpha \ge 0$

H. Trigonometry and coordinate system:

Sense of the straight line	Increasing	Decreasing
Graphical representation		
Form of the slope	$slope = \tan \alpha$	$slope = -\tan \alpha$
Condition on the angle α	where α is the acute angle between the given line and the <i>positive</i> x-axis	α is the acute angle between the given line and <i>negative</i> the <i>x</i> -axis

I. Real life situations:

Angle of	Definition	Figure
Elevation	Is the acute angle formed <i>above</i> the horizontal to inspect an object.	Angle of elevation
Depression	Is the acute angle formed <i>below</i> the horizontal to inspect an object.	Angle of depression

A	PPLICATION	To avoid a steep descent, a plane flying at 30,000 ft. starts its descent 130 miles away	
-		from the airport. For the angle	
30.000 f	ø	of descent ø, to be constant, at what angle should the plane descend?	
50,000 It.		Ø	
130 Miles			

Mathematics A.S-14. Trigonometric relations in right triangles