Lycée Des Arts	Mathematics	$9^{\text {th_-Grade }}$
Name:	"Trigonometric Ratios"	A.S-14.

Introduction:

The building of the Egyptian pyramids may seem to have little in common with modern sciences like geophysics \& seismology. But certain principles of mathematics enter into all such activities. Many are used in the field of mathematics called \mathcal{T} rigonometry.

A. What does Trigonometry do?

Trigonometry finds relationships between the sides and angles of a right triangle.
1- Find length of a side, establish identities
B. Goals: 2- Determine the value of an acute angle between any two segments.

3- Find the area of a triangle using an angle enclosed between two given sides.
Focusing events:

Figures					

C. Defining the three main trigonometric ratios: $\sin \alpha ; \cos \alpha ;$ and $\tan \alpha$.

Let B be the orthogonal projection of a variable point A, that belongs to ray [oy), on [ox). Where $x \hat{o} y=\alpha$, if $[A B]$ varies in a way that it remains perpendicular to $[o x)$, then prove that

Trigonometric line	Figure	Formula	\mathcal{H} \%w to remember
Sine		$\sin A \hat{O} B=\frac{\text { Opposite }}{\text { Hypotenuse }}=\frac{A B}{O A}$ IN SHORT $\sin \alpha=\frac{O p p}{h y p}$	SOh
Cosine		$\cos A \hat{O} B=\frac{\text { Adjacent }}{\text { Hypotenuse }}=\frac{O B}{O A}$ IN SHORT $\cos \alpha=\frac{a d j}{h y p}$	cah
Tangent		$\begin{array}{r} \tan A \hat{B} C=\frac{\text { Opposite }}{\text { Adjacent }}=\frac{A B}{O B} \\ \text { IN SHORT } \\ \tan \alpha=\frac{O p p}{A d j} \text { or } \tan \alpha=\frac{\sin \alpha}{\cos \alpha} \end{array}$	$\begin{gathered} \text { Toa } \\ \text { OR } \\ \text { TSC } \end{gathered}$

D. Fundamental trigonometric identities relating:

1) Sine and Cosine: The Pythagorean identity:
a- Find $\sin \alpha \& \cos \alpha$
$\sin \alpha=$ \qquad $\cos \alpha=$
b- Write the Pythagoras theorem in the right triangle $A B C$.

c- Use parts a \& b to verify that: $\sin ^{2} \alpha+\cos ^{2} \alpha=1$
\qquad
\qquad
\qquad
\qquad

Therefore,

$$
\sin ^{2} \alpha+\cos ^{2} \alpha=1
$$

2) Cosine and tangent: Use the Pythagorean identity, $\sin ^{2} \alpha+\cos ^{2} \alpha=1$ to find:
a) $\tan \alpha$ in terms of $\cos \alpha$:
b) $\cos \alpha$ as a function of $\tan \alpha$: \qquad
Therrfore, $\tan ^{2} \alpha=\frac{1-\cos ^{2} \alpha}{\cos ^{2} \alpha}$ and $\cos ^{2} \alpha=\frac{1}{1+\tan ^{2} \alpha}$

Consider the right triangle $A B C$ of hypotenuse $[A C]$

1) Indicate the sum of $\alpha \& \beta$:
2) What do we call $\alpha \& \beta$:
3) Determine in terms of sides:

$\sin \alpha=$	$\cos \beta=$
$\sin \beta=$	$\cos \alpha=$

4) Compare obtained results:

Conclusions: If $\alpha \& \beta$ are complementary angles, then \qquad
E. Remarkable angles:
a) Use your calculator to complete:
rkable angles:

nour calculator to complete:					
Angle (α)	0°	30°	45°	60°	90°
$\sin \alpha$			$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}=1$
$\cos \alpha$				$\frac{\sqrt{1}}{2}=\frac{1}{2}$	$\frac{\sqrt{0}}{2}=0$
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞
$\cot \alpha$					

b)Can you device a method to memorize the above values in ease? Try.
c) Use the above table to complete if $\alpha \& \beta$ are two................ angles ($\alpha+\beta=90^{\circ}$) then,
$\cot \alpha \times \cot \beta=\ldots .$.

$$
\tan \alpha \times \ldots \ldots \ldots=1
$$

F. Area of a triangle in a different way. (Using sine of the angle enclosed between two sides):

1) Indicate the area of the triangle $A B C$.
2) Find $\sin \alpha$
3) Determine the area of $A B C$ independent of h.
4) Can you find the area of $A B C$ as a function of $a, c \& \beta$.

5) Compare obtained results:

Conclusions:
The area of a triangle is equal to one-half the product of two sides and the sine of the contained angle.

$\mathfrak{Z n} \mathfrak{s y m b o l s : ~}$

G. Bounding (Framing)trigonometric ratios:

In words	sine and cosine ratios of an acute angle are bounded between 0 and 1	tangent and cotangent ratios of an acute angle are greater than zero		
In sym6o/s	$0 \leq \sin \alpha \leq 1$	$0 \leq \cos \alpha \leq 1$	$\tan \alpha \geq 0$	$\cot \alpha \geq 0$

H. Trigonometry and coordinate system:

Sense of the straight line	Increasing	Decreasing	
Graphical representation			
Form of the slope	slope $=\tan \alpha$	where α is the acute angle Cetween the given line and the positive x-axis	α is the acute angle between the given line and negative the x-axis

I. Real life situations:

Angle of	Definition	Figure
Elevation	Is the acute angle formed above the horizontal to inspect an object.	
Depression	Is the acute angle formed below the horizontal to inspect an object.	

