AlMahdi High Schools
$\mathcal{N a m e : ~}$ "Infernal Statistics"

General Revision:

The following raw data represents the marks of $11^{\text {th }}$ grade students in math per 20 in a certain test:

9	13	15	13	12	7	17	9	18	13
18	12	13	11	17	13	13	7	9	11
9	15	15	9	12					

1) Statistical vocabulary:
a. Specify the:
i. Population:
ii. Statistical unit:
b. Indicate the variable (character) under study and specify its nature.
c. List two modalities of the variable under study:
d. Choose one of the following terms that best describe the variable:
i. Continuous: means the variables are in interval form (classes) such as height, weight.
ii. Discrete: means the variables are whole numbers such as number of brothers
2) Rearrange the given raw data in a statistical table of increasing cumulative frequency.

Mark $\left(x_{i}\right)$	7	9	11	12	13				Total
Frequency $\left(n_{i}\right)$	2	4	2	3					
I.C.F									

3) Specify the significance of the numbers: $n_{i}=\{1,4 \& 2\}$
4) Determine and interpret each of the following
a. Statistical indicators: indicate certain aspects about a given series
i. Mode, M_{o}
ii. Range, R
b. Central tendencies: such values shows the central value of a quantitative statistical series
i. Median, M_{e} :
ii. Mean, $\bar{x}=\frac{\sum_{i=1}^{k} n_{i} x_{i}}{N}$:
5) The standard deviation is given by: $\sigma=\sqrt{V}=\sqrt{\frac{1}{N} \sum_{i=1}^{k}\left(n_{i} x_{i}^{2}\right)-(\bar{x})^{2}}$
a. Use your calculator to calculate σ :
b. Explain the obtained value.
c. Find the percentage of students whose mark is in the interval $[\bar{x}-\sigma, \bar{x}+\sigma]$
6) Is it true that average of the class is 12.28 with an error of 3.62 ?

In the above example the modalities where discrete, that is to say single valued numerals.
Now, we are interested in continuous data, a data is continuous if the modalities are listed as interval (classes).
1- Converting a range of discrete data into classes or intervals:
To divide discrete data into classes of equal size we consider the following factors:
\checkmark The number of intervals.
\checkmark The size or amplitude of the class
\checkmark The upper and lower limits of the interval.
Consider the following data:

9	13	15	13	12	15	17	9	18	13
18	12	13	11	17	13	13	7	9	11
15	15	15	9	12					

1) Regroup the above data in classes of amplitude 3:

Classes $\left(C_{i}\right)$	$[7 ; 10[$	$[10 ; 13[$		

2) If the center of a class(interval) is its midpoint then complete the following table:

Classes $\left(C_{i}\right)$	$[7 ; 10[$	$[10 ; 13[$			Total
Frequency $\left(n_{i}\right)$	5				
Center x_{i}					
R.F					
I.C.F					
D.C.F					

3) Prove that the median class is $[13 ; 16[$
4) Determine the modal class:
5) If the average of a statistical series $\left(X_{i} ; n_{i}\right)$ is: $\bar{x}=\frac{1}{N} \sum_{i=1}^{k} n_{i} c_{i}=\frac{1}{N}\left(n_{1} c_{1}+n_{2} c_{2}+\ldots \ldots .+n_{k} c_{k}\right)$, then approximate the mean mark of the given students:
6) Complete the construction of the histogram and the polygon of frequencies

7) The following points are on the polygons of:
I.C.F: $A(7 ; 0), B(10 ; 7), C(13,12), D(;) \& E(;)$
D.C.F: $F(7 ; 25), G(10 ; 18), H(13),, I(;) \& E(;)$
a. Use table to complete the above points
b. Construct the polygons of I.C.F \&I.D.F on same graph:

The median is the «abscissa» of the point of intersection of the polygon of I.C.F(or D.C.F) with the straight line o of equation $\mathrm{y}=\mathrm{N} / 2$, where N is the total frequency .

OR: The median m is the "abscissa" of the point of intersection of the polygons of the increasing and the decreasing cumulative frequencies .

OR: We take from I.C.F the segment that contains the point $\mathrm{M}(\mathrm{m} ; \mathrm{N} / 2), \mathrm{C}, \mathrm{M}$ and D are collinear then $\frac{y_{M}-y_{C}}{y_{D}-y_{C}}=\frac{x_{M}-x_{C}}{x_{D}-x_{C}}$ we get $x_{M}=\mathrm{m} \approx 13.2$

8) Mode - Modal class

The mode M_{0}, is the value of the variable having the highest frequency, that is most the individuals of the population have this value .
An approximation of the mode of a series grouped in classes is the center of the modal class .

Mode Graphically

The abscissa of the point of intersection
Of segments [AB] and [CD] the diagonals
Of the rectangle relative to modal class .

Question1: Given the data: $11 \begin{array}{llllllllllllllll}1 & 2 & 3 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 8 & 9 .\end{array}$
1- Calculate the mode and the median of this data.
2- Group this data in classes of amplitude 2.
3- Calculate the mode and the median .Conclude.
Question 2: A bookstore announced the following distribution of books sold last week according to prices: 1-Complete the table showing centers, increasing and decreasing cumulative frequencies:

Price (in 1000 LL)	[5; 10[[10; 15[[15; 20[[20; 25[$[25 ; 30]$
Frequency	40	70	48	56	46

2- Calculate the average price of a book sold.
3- What is the percentage of books sold at a price of at least15000 LL?
4- Draw the polygon of IC f and that of decreasing cumulative frequencies.
5 - Estimate graphically the median price. What does the answer signify?
Recall That -Range, mean, variance, standard deviation.

Classes	$\left[\mathrm{x}_{1} ; \mathrm{x}_{2}[\right.$	$\left[\mathrm{x}_{2} ; \mathrm{x}_{3}[\right.$	$\left[\mathrm{x}_{3} ; \mathrm{x}_{4}[\right.$	$\ldots \ldots \ldots$	$\left[\mathrm{x}_{\mathrm{k}} ; \mathrm{x}_{\mathrm{k}+1}\right]$
Frequencies	n_{1}	n_{2}	n_{3}	$\ldots \ldots \ldots$	n_{k}
Centers	c_{1}	c_{2}	c_{3}	$\ldots \ldots \ldots$.	c_{k}

- Mean: $\bar{x}=\frac{1}{N}\left(n_{1} c_{1}+n_{2} c_{2}+\ldots \ldots . .+n_{k} c_{k}\right)$.
- Range: $\mathrm{e}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{1}$.
- Variance: $V=\frac{1}{N}\left(n_{1} c_{1}^{2}+n_{2} c_{2}^{2}+\ldots \ldots \ldots+n_{k} c_{k}^{2}\right)-\bar{x}^{2} \quad$ - Standard deviation: $\sigma=\sqrt{V}$.

