1- Find the squares of the real numbers:

The real numbers	3	-5	-4	-2	-1.1	0	1.2	7
Their squares								

- a. Can you find a *real* number in which its square is negative?
- b. What do you notice?
- 2- Complete the following table:

	1 st - couple		2 nd - couple		3 rd - couple	
Numbers	2	-2	$\frac{1}{5}$	$-\frac{1}{5}$	a	- <i>a</i>
Their squares						

a. What do you notice about the squares of the above opposite numbers?

b. Generalize what you have found:

3- Find the real numbers whose squares are presented in the following table:

Numbers	0	1	100	3600	0.09	0.0016
Square form		$(-1)^2$ $(+1)^2$				
Sign of base		-ve +ve				

4- Remember that:

Since the square of	-1 & +1	is equal	1	than	-1 & +1	are called the	1
Since the square of	-7 & +7	to	49	then	-7 & +7	square roots of	49

What is a radical?

Ger By definition the *positive square root* of a positive real number is called the *radical*.

Eg: Compute the following:

- Radical(121) = Radical(81) =
- $Radical(225) = \dots + Radical(49) = \dots$

Instead of writing radical (25) we can use the symbol, $\sqrt[2]{25}$ or simply $\sqrt{25}$.

Terminology: $\sqrt[index \rightarrow 2]{a}_{\leftarrow radicand}^{\leftarrow radical sign}$ where a is any positive real number

Mathematics A.S-3. Square roots.

Calculate the following:

\checkmark $\sqrt{16} = \dots$	☆ $(16)^{\frac{1}{2}} = \dots$	a) What do you notice?
\checkmark $\sqrt{25} = \dots$	☆ $(25)^{\frac{1}{2}} = \dots$	b) What do you conclude?
\checkmark $\sqrt{64} = \dots$	$rac{1}{2}$ (64) ^{$\frac{1}{2}$} =	

Correct the following false statements:

- a) A non-zero real number admits two square roots.....
- b) To find the square root of a number, we divide it by 2.....
- c) 2 is the square root of -4.
- 5- Consider the table below:

Compute the numerical value of	For $x = 1$	For $x = 0$	For $x = 3$	For $x = 5$
$A = \sqrt{\left(x - 2\right)^2}$				

6- Based on the above example find:

a.
$$\sqrt{(\pi - 2)^2} = \dots$$

b. $\sqrt{(\pi - 4)^2} = \dots$

- c. Study the simplified form of: $\sqrt{x^2} =$
- 7- Use a calculator to compare:

No.	Ex	pressions	Answer	Generalization	Condition(s)
а	$\sqrt{3} \times \sqrt{2}$	and $\sqrt{3\times 2}$		$\sqrt{a} \times \sqrt{b} = \dots$	
b	$\frac{\sqrt{3}}{\sqrt{2}}$	and $\sqrt{\frac{3}{2}}$		$\frac{\sqrt{a}}{\sqrt{b}} = \dots$	

8- Use a calculator to compute:

No.	Expressions	Answer	Generalization	Condition(s)
a	$3\sqrt{2}+5\sqrt{2}$			
b	$2\sqrt{3}-7\sqrt{2}$			
С	$3\sqrt{2} \times (-2\sqrt{5})$			

Reminder:

Compute: $(3+5)^2 = \dots$

$$(3^2 - 2^2)^2 = \dots$$

Calculate:

Values of $a \And b$	$\sqrt{a^2+b^2}$	$\sqrt{a^2} + \sqrt{b^2}$	Compare: $\sqrt{a^2 + b^2}$ & $\sqrt{a^2} + \sqrt{b^2}$
a = 1 & b = 1			
a = 5 & b = -4			
a = 4 & b = 5			

♦ What do you notice?.... ♦ Is it true that: $\sqrt{a \pm b} \le \sqrt{a} + \sqrt{b}$?....

9- Find the term (factor), that if multiplied by the given term (factor) the radical will be eliminated:

No.	Term	Its conjugate	Product of the term by its conjugate
1	$\sqrt{2}$		2
2	$3\sqrt{5}$		15
3	$3\sqrt{2}-2\sqrt{3}$		18 – 12
4	$2\sqrt{5} + 1$		20 – 1
5	$-\sqrt{2}-\sqrt{3}$		

10- Eliminate the radical from the denominator of: (Rationalize)

a.
$$\frac{3-\sqrt{2}}{\sqrt{5}}$$

b.
$$\frac{1+\sqrt{5}}{1-\sqrt{5}}$$

c.
$$\frac{3-2\sqrt{5}}{-1-\sqrt{5}}$$

- 11- Given that: a = 7
 - a. Frame (enclose) *a* between two consecutive squared numbers.

.....

b. Deduce the encirclement of \sqrt{a} .

.....

12- Let $b = 1 + 3\sqrt{2}$

a. Bound $\sqrt{2}$ between two integers. Show your work.

.....

b. Deduce the bounding of b.

••••••