Lycée (Des Arts	Mathematics
Name:	"Rhombus"

Definition of a rhombus

Observe the adjacent figure then complete:

$A B=\ldots . \ldots . . c m$	$B C=\ldots \ldots . . c m$
$C D=\ldots c m$	$A D=\ldots . . . c m$

Hence, $A B=$ \qquad $=$ \qquad $=$ \qquad $=$
${ }^{\Perp}$ Conclusion: A quadrilateral whose sides are \qquad is a rhombus.

Definition: A rhombus is a quadrilateral with four equal sides.

Properties of a rhombus

I- Diagonals of a Rhombus: Consider the rhombus $A B C D$.
Prove that ($A C$) is the perpendicular bisector of $[B D]$ and vice versa
$\checkmark A B=\ldots . .$. (Adjacent sides of a rhombus are equal)
Then, A is \qquad from both extremities of
So, A belongs to the perpendicularof $[B D]$.
$\checkmark C B=$ \qquad
Then, C is
from
of $[B D]$
So, C belongs to the

Hence, $(A C)$ is the perpendicular …...... of
Similarly, $(B D)$ is the
Conclusion: In a rhombus diagonals are
of each other.

Rule-1

Diagonals of a rhombus are perpendicular bisectors of each other
II- Parallelograms having two consecutive sides equal:
Given the parm $A B C D$ such that $A B=A D$.
a. Prove that triangles $A B D \& B C D$ are equal.

In triangles $A B D \& B C D$ we have:

b. Prove that $D A=D C$
c. Complete: $A B=A D=\ldots \ldots=\ldots \ldots \quad(\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.

Conclusion: A parallelogram with two adjacent sides equal is a

III- Parallelogram whose one of its diagonals is a bisector:

$A B C D$ is a parallelogram such that $[B D)$ is a bisector of $A \hat{B} C$.
a. Prove that $A B C$ is an isosceles triangle of vertex B.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Complete:

```
\(A B=D C(\) opp sides of a parm \()\)
\(A B=\ldots . .(\) Legs of an isoscles \(\Delta)\}\) hence, \(A B=\)
\(A D=\ldots . .(\) opp sides of a parm)
Thus, ABCDis a
\(A B=D C(\) opp sides of a parm \()\)
\(A B=\ldots . .(\) Legs of an isoscles \(\Delta)\}\) hence,\(A B=\ldots \ldots . .=\ldots \ldots .=\ldots \ldots\).
\(A D=\ldots . .(\) opp sides of a parm)
Thus, ABCDisa
```

${ }^{4}$ C Conclusion: A parallelogram with one of its diagonals is a is a rhombus.

IV- Parallelogram whose diagonals are perpendicular:

$A B C D$ is a parallelogram such that $(A C) \perp(B D)$.
a. Prove that sides adjacent to vertex A are equal.

b. What can you say about the other sides? Justify.

Conclusion: A parallelogram with is a rhombus.

靁
 How to prove a quadrilateral is a rhombus?

i- Starting from the definition: A quadrilateral with four equal sides is a rhombus.
ii- Starting from diagonals: A quadrilateral in which diagonals are perpendicular and bisect each other is a rhombus.
iii-Starting from_axes of symmetry: A quadrilateral whose diagonals are axes of symmetry is a rhombus.

期 How to prove a parallelogram is a rhombus?

i - Starting from sides: A parallelogram with two equal consecutive sides is a rhombus.
ii- Starting from diagonals: A parallelogram with perpendicular diagonals is a rhombus.
iii-Starting from diagonals: A parallelogram with one diagonal is a bisector of its one angles is a rhombus.
How to construct a rhombus?

Draw another segment so
that the two segments are perpendicular bisectors of each other

Join the four extremities of the diagonals

