Let (C) be a circle of center O and radius $r c m$, where A is any point in the plane.
1- How many tangents can be drawn from a point A :
a) Inside the circle?
c) Outside the circle?
b) On the circle?

2- Let (T) be the tangent at a point A on the circle (C) of center O.
a. What is the value of the angle formed by the straight line (T) and the radius $[O A]$?
b. Construct (T)
\qquad
3- Let $A \& B$ be the points of intersection of the circles $s(O, 3 \mathrm{~cm}) \& n\left(O^{\prime}, O O^{\prime}=4 \mathrm{~cm}\right)$.
a. Trace the circles and plot the points $A \& B$.
b. Plot P the symmetric of O with respect to O^{\prime}.
c. What do the angles $P \hat{A} O \& P \hat{B} O$ represent?
d. Deduce the measure of $P \hat{A} O \& P \hat{B} O$
\qquad

A. $\left.O O^{\prime}=4 \mathrm{~cm}\right)$.

\qquad
\qquad
\qquad
\qquad
4- Consider the circle $\psi(O, 3 \mathrm{~cm})$ and the point A so that $O A=5 \mathrm{~cm}$
a. Devise a method to trace the tangents $\left(T_{1}\right) \&\left(T_{2}\right)$ from A to (ψ) at $R \& N$ respectively.

c. Prove that: $[A O)$ is the bisector of $R \hat{A} N$:
\qquad
\qquad
\qquad
\qquad
d. Deduce that $[O A)$ is the bisector of $R \hat{O} N$:
e. What is the relative position of $(O A)$ with respect to $[R N]$?

Conclusions

If $(A R) \&(A N)$ are two tangents drawn from a point A to a circle (C) of center O at $R \& N$ resp. Then,

1. A is equidistant from the two points of tangencies $R \& N$

$$
\text { Or, } A R=A N \text {. }
$$

2. Line joining point of intersection of the two tangents and center of (C) bisects:
a. The angle formed by the two tangents " $[A R) \&[A N)^{\prime \prime}$.

Or, $[A O)$ is the bisector of the angle $R \hat{A} N$.

b. The central angle intercepting the arc formed by the two points of tangencies.

3. Line joining point of intersection of the two tangents and center of (C) is the perpendicular bisector of the chord joining points of tangencies.
$\mathrm{Or},(O A)$ is the \perp bisector of $[R N]$

4. Line joining point of intersection of the two tangents and center of (C) is the axis of symmetry of the figure formed by (C) and the two tangents.

