Al Mahdi High Schools	Mathematics	11 th -Grade A.S-5.
Name:	" Oriented Angles "	A.S-5.
Definitions and over view:		
\checkmark A plane is oriented if every cir	ccle in it is oriented.	
	l only if the principal measure of (\overrightarrow{AB})	; \overrightarrow{AC}), is stirctly positive
-	ABC or RNK is a direct plane? Justify	
В	C K N	
b) Find the following sum: $(\overrightarrow{AB};$	\overrightarrow{AC} + (\overrightarrow{BC} ; \overrightarrow{BA}) + (\overrightarrow{CA} ; \overrightarrow{CB}) =	
	if and only if its norm is 1 unit. And	we write: $\ \vec{v}\ = 1$ unit
Consider the vectors $\vec{u} \& \vec{v}$:		
a. What can you say about the	$\vec{u} \& \vec{v}? \dots$	······ <i>u</i>

- b. Write the vector equation that relates the above vector. $\vec{1}$
- 2) Let $\vec{u} \& \vec{v}$ be any two non-zero vectors, where $\vec{u} = k\vec{v}$ and $k \in \mathbb{R}^*$ Discuss according to the values of k the orientation of $\vec{u} \& \vec{v}$:

- 3) Consider in the orthonormal system of axes $(O; \vec{i}, \vec{j})$ the points A(3;2) & B(5;1):
 - a. Determine: i) \overrightarrow{AB} :..... ii) $\left\|\overrightarrow{AB}\right\|$:....
- b. Determine two unit vectors that are collinear with \overrightarrow{AB} : **B.** How to find the angle between any two free vectors:

Let $\vec{u} \otimes \vec{v}$ be any two non-zero vectors so that, $\vec{u} = \overrightarrow{OM}$ and $\vec{v} = \overrightarrow{ON}$: If $\hat{MON} = \alpha + 2k\pi$, where $k \in \mathbb{Z}$, then the angle formed between $\begin{pmatrix} \vec{v} & \vec{v} \\ u, v \end{pmatrix} = \dots$ Or we can write, $\hat{MON} = \alpha \mod[2\pi]$.

 v_{\pm}

✓ \vec{u} and \vec{v} are collinear if and only if $(\vec{u}, \vec{v}) = k\pi$, $\begin{cases} if \ k < 0, then \ vectors \ are \ of \ opp. \ senses. \\ if \ k > 0, then \ vectors \ are \ of \ same \ senses. \end{cases}$

Ex: Determine $(\overrightarrow{CA}; \overrightarrow{CB})$, if ABC is a direct triangle such that : $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{5\pi}{12}$ and $(\overrightarrow{BA}; \overrightarrow{BC}) = -\frac{\pi}{6}$. Chasle's relation:

 $\bigstar \quad \left(\overrightarrow{u}, \overrightarrow{v} \right) + \left(\overrightarrow{v}, \overrightarrow{w} \right) = \left(\overrightarrow{u}, \overrightarrow{w} \right)$

11th-Grade. Scientific section

A.S-5. Oriented Angles