ALMahdi High Schools	Mathematics	11 ${ }^{\text {th_Grade }}$
$\mathcal{N a m e :}$	" Oriented Angles "	A.S-5.

A. Definitions and over view:
\checkmark A plane is oriented if every circle in it is oriented.
\checkmark A triangle $A B C$ is direct if and only if the principal measure of $(\overrightarrow{A B} ; \overrightarrow{A C})$, is stirctly positive.
a) Which of the triangles below, $A B C$ or $R N K$ is a direct plane? Justify.

b) Find the following sum: $(\overrightarrow{A B} ; \overrightarrow{A C})+(\overrightarrow{B C} ; \overrightarrow{B A})+(\overrightarrow{C A} ; \overrightarrow{C B})=$
\checkmark Unit vectors: \vec{v} is a unit vector if and only if its norm is 1 unit. And we write: $\|\vec{v}\|=1$ unit.

1) Consider the vectors $\vec{u} \& \vec{v}$:
a. What can you say about the $\vec{u} \& \vec{v}$?
b. Write the vector equation that relates the above vector.

2) Let $\vec{u} \& \vec{v}$ be any two non-zero vectors, where $\vec{u}=k \vec{v}$ and $k \in \mathbb{R}^{*}$

Discuss according to the values of k the orientation of $\vec{u} \& \vec{v}$:

If	Then
$k=1$	$\vec{u}=\vec{v}$

3) Consider in the orthonormal system of axes $(O ; \vec{i}, \vec{j})$ the points $A(3 ; 2) \& B(5 ; 1)$:
a. Determine: i) $\overrightarrow{A B}$:
ii) $\|\overrightarrow{A B}\|$:
b. Determine two unit vectors that are collinear with $\overrightarrow{A B}$:
B. How to find the angle between any two free vectors:

Let $\vec{u} \& \vec{v}$ be any two non-zero vectors so that, $\vec{u}=\overrightarrow{O M}$ and $\vec{v}=\overrightarrow{O N}$:
If $M O \hat{N}=\alpha+2 k \pi$, where $k \in \mathbb{Z}$, then the angle formed between $(\vec{u}, \vec{v})=$

Or we can write, $M \hat{O} N=\alpha \bmod [2 \pi]$.

Ex: In the orthonormal system $(O ; \vec{i}, \vec{j})$, plot the points:
$\checkmark E$ the midpoint of $\widehat{A B}$.
$\checkmark G$ so that $(\overrightarrow{O B}, \overrightarrow{O G})=\frac{\pi}{6} \bmod [2 \pi]$.
$\checkmark B^{\prime}$ which is diametrically opposite to B.

Determine the angles:
$(\overrightarrow{O A}, \overrightarrow{O E})=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
$\left(\overrightarrow{O E}, \overrightarrow{O B^{\prime}}\right)=$ \qquad
$(\overrightarrow{O E}, \overrightarrow{O G})=$
$(\overrightarrow{O E}, \overrightarrow{O K})=$
\qquad

C. Angle between two non-zero vectors:

Let $\vec{u} \& \vec{v}$ be any two non-zero vectors so that, $(\vec{u}, \vec{v})=\alpha+2 k \pi$
Determine the following angles:

Properties:
$\checkmark(\vec{u}, \vec{v})=(a \vec{u}, a \vec{v})$ for all $a \neq 0$.
$\checkmark(\vec{u}, \vec{v})=(a \vec{u}, b \vec{v})$ for all $a b>0$
$\checkmark \vec{u}$ and \vec{y} are collinear if and only if $(\vec{u}, \vec{v})=k \pi,\left\{\begin{array}{l}\text { if } k<0, \text { then vectors are of opp. senses. } \\ \text { if } k>0, \text { then vectors are of same senses. }\end{array}\right.$
Ex: Determine $(\overrightarrow{C A} ; \overrightarrow{C B})$, if ABC is a direct triangle such that : $(\overrightarrow{A B} ; \overrightarrow{A C})=\frac{5 \pi}{12}$ and $(\overrightarrow{B A} ; \overrightarrow{B C})=-\frac{\pi}{6}$. Chasle's relation:

* $(\vec{u}, \vec{v})+(\vec{v}, \vec{w})=(\vec{u}, \vec{w})$

