Lycée $\operatorname{Des~Arts~}$	Mathematics	$9^{\text {th }}$-Grade
Name:	"Inscribed Quadrilaterats"	A.S-5.

In this chapter we will work with convex quadrilaterals.
$\boldsymbol{E x}_{1}$:
1- What is a quadrilateral?
2- Name 5 quadrilaterals that you already know.

3- Are these quadrilaterals CONVEX?

If all other sides are located on same side of the extend side, then quadrilateral is convex.

If not then quadrilateral is not convex.

4- Consider the following figures:

Fig-1.

Fig-2.

Fig-3
a. Which of the above quadrilaterals is (are) convex?
b. Justify, why the other is not convex.
$\boldsymbol{E x}_{2}$: Tick the figure that has all of its vertices on the circle?

A. Def: A convex quadrilateral is said to be inscribed in a circle (or we say cyclic); if its four vertices belong to this circle.

B. How to prove a convex quadrilateral to be inscribed?

$\boldsymbol{E x}_{3}$: Justify briefly why each of the following quadrilaterals is cyclic?

$\boldsymbol{E x}_{4}$: Consider the following quadrilaterals:

a) Which of the given quadrilaterals is(are) inscribed? Justify. (don't use angles)
b) Find the sum of opposite angles in each figure.
c) What do you notice?
d) Can you determine if a trapezoid is an inscribed quadrilateral?

e) Can you find a trapezoid which is inscribed? Justify your choice.

Conclusions

I. General cases: A quadrilateral is inscribed in a circle:

1. If its four vertices belong to this circle. (Ex $:$ Fig-1)
2. If there exists a point that is equidistant from all four vertices of a quadrilateral. (Fig-2)

3. If it has two opposite supplementary angles.	4. If the angles formed by the diagonals and the opposite sides are equal. $(G O-g g 6)$

II. Special case: A convex quadrilateral is cyclic

4. If a quadrilateral is formed of two right triangles:

| Sharing the same hypotenuse from the | Sharing the same hypotenuse from |
| :---: | :---: | :---: |
| opposite sides | |

How to find the circumcenter of an inscribed quadrilateral in general?

Device a two steps procedure to locate the circumcenter of the following quadrilateral: (ggb)

$1^{\text {st }}$-step:
$2^{\text {nd }}$-step:

