Focusing event:

8 To determine the size of a TV screen one has to measure the diagonal of the screen. If the size of a screen is 32 inch it means that the diagonal of the screen is 82.28 cm . I wonder how many centimeters is a 50 inch screen?

Introduction:

Dealing with proportional numbers is just like equivalent fractions
Ex: $\frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{3 \times 3}{5 \times 3}=\frac{3 \times 4}{5 \times 4}=\cdots$ give two or fractions that are equivalent to $\frac{3}{4}=\cdots=\cdots=\cdots$
A sequence ($y_{1}, y_{2}, y_{3} \ldots$) of non-zero real numbers is directly proportional to another Def ${ }_{1}$: non-zero set of numbers $\left(x_{1}, x_{2}, x_{3} \ldots\right)$ if and only if: $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}=\frac{y_{3}}{x_{3}}=\cdots=k$, where k is called the common ratio or ratio of of proportionality

The magnitudes $x \& y$ of two sets of real numbers are directly proportional if Def $2:$ and only if, the ratio of $\frac{y}{x}=a$ or we write: $y=a x$

Where, the relation $y=a x$ is called a linear function
Use above definitions to answer the following questions
$\underline{E x}_{1}$: Consider the following proportionality tables:
Part-A:

¢	x	2	5	7	11
$\stackrel{\text { \% }}{\sim}$	y	6	15	21	33

1) Find the following ratios: $\frac{y_{1}}{x_{1}}=$ \qquad $\frac{y_{2}}{x_{2}}=$ \qquad
\qquad
\qquad
2) What do you notice?
3) Are $x \& y$ proportional? Justify
4) What constant, a, multiplied by x gives y ?
5) Write an algebraic expression of y as a function of x : \qquad
Part-B:

	x	5	10	35
	y	1	2	7

i - Find the following ratios: $\frac{y_{1}}{x_{1}}=\ldots \ldots \ldots \ldots ; \frac{y_{2}}{x_{2}}=\ldots \ldots \ldots \ldots ; \frac{y_{3}}{x_{3}}=$ $=$.
ii- What do you notice?
iii- What constant, a, multiplied by x gives y ?
$i v$ - Are $x \& y$ proportional? Justify
v - Write an algebraic expression of y as a function of x :
$\boldsymbol{E x}_{2}$: Consider the following table:

x	12	33	35
y	4	11	7

a) Is the above table a proportionality table? Justify
b) Propose a definition for proportionality table:

Exs: Find the numerical values of $x \& y$, so that the table below is a proportionality table:

x	$\sqrt{\sqrt{5}+2}$	3	5
$\sqrt{\sqrt{5}-2}$	4	y	7

Proportionality and ratios:

If $a, b, c \& d$ are proportional numbers, then we can write in this order $\frac{a}{b}=\frac{c}{d}$

1) If the first and fourth terms ($a \& d$) are the extremes of the formed proportion, also the second and third terms $(b \& c)$ are the means of the formed proportion, then find:
\checkmark The product of the means:
\checkmark The product of the extremes:
$>$ Are the formed products equal?
\checkmark If we permute (interchange) the extreme terms, we obtain: $\frac{\square}{\bar{b}}=\frac{c}{\square}$
\checkmark Permute (interchange) the mean terms:
\checkmark Determine the inverse of: $\frac{a}{b}=\frac{c}{d}$:
C Fourth Proportional: x is the fourth proportional of the numbers $a ; b$ and c when $\frac{a}{b}=\frac{c}{x}$.
C Mean of Proportionality: x is the mean proportional of the numbers a and d when $\frac{a}{x}=\frac{x}{d}$.

Consider the following table: | x | 1 | 4 | $0 . \overline{3}$ |
| :---: | :---: | :---: | :---: |
| y | 2 | 0.5 | 6 |

1) Is the above table a proportionality table? Justify.
2) Find the following products: $x_{1} \cdot y_{1}=$ \qquad $x_{2} \cdot y_{2}=$ \qquad
3) What do you notice?
4) Write an algebraic expression that relates $x \& y$: \qquad

$$
\begin{aligned}
& \text { A sequence }\left(y_{1}, y_{2}, y_{3} \ldots\right) \text { of non-zero real numbers is inversely proportional to } \\
& \text { Def } f_{2} \text { : another non-zero set of numbers }\left(x_{1}, x_{2}, x_{3} \ldots\right) \text { if and only if: } \frac{y_{1}}{\frac{1}{x_{1}}}=\frac{y_{2}}{\frac{1}{x_{2}}}=\frac{y_{3}}{\frac{1}{x_{3}}}=\ldots=k . \\
& , \text { Or we can write } x_{1} y_{1}=x_{2} y_{2}=\cdots=k
\end{aligned}
$$

Linear functions and Percentages:

Complete the following table:

Different representations of numbers (fractions)							
Fraction form	$\frac{1}{2}$					$\frac{3}{5}$	
Decimal form				0.2			
Percentage			75\%				
In words	Half						One
Angle					135°		360°
Graphically							

Percentage of an item:

If r and n are any two positive numbers, then $r \%$ of n is given by the relation: $\frac{r}{100} \times n$

Increase in price:

If the initial price (size, measure ...) x of an item is increased by $r \%$, then:

| 1 | The increase in price is given by: $a_{1}=\left(1+\frac{r}{100}\right)$ |
| :---: | :--- | :--- |
| 2 | The Value of the new price \boldsymbol{y} of the item will be given by: |
| $y=x+\frac{r}{100} x \quad$ OR $\quad y=a x=\left(1+\frac{r}{100}\right) x$ | |

Decrease in price:

If the original price (length, area ...) x of an item is decreased by $a \%$, then:

1^{\prime}	The decrease in price is given by: $a_{2}=\left(1-\frac{d}{100}\right)$
2^{\prime}	The Value of the new price \boldsymbol{y} of the item will be given by: $y=x-\frac{d}{100} x$ $\boldsymbol{O R} y=a x=\left(1-\frac{d}{100}\right) x$

Double decrease or increase in price:

$$
y=\left(a_{1} \cdot a_{2}\right) x
$$

Notes:

1) If the values $x \& y$ are directly proportional then as xincreases y increases too.
2) If $a>1$ where $x \& y$ belong to \mathfrak{R}^{+}then, $y>x$ (New price is greater than old one)
3) If $a<1$ where $x \& y$ belong to \mathfrak{R}^{+}then, $y<x$ (New price is less than old one)
4) If $a=1$ where $x \& y$ belong to \mathfrak{R}^{+}then, $y=x$.

Graphical representation of a finear function:

Terminologies:

${ }^{4} f$:is the rule that relates the variables $x \& y$.

f	x	0.5	1	2	3
	$y=f(x)$	1	2	4	6
	(x, y)	$(0.5,1)$	$(1,2)$	$(2,4)$	$(3,6)$

${ }^{4} x$: is the pre-image of the given rule.
$\left.{ }^{4}\right) y$ or $f(x)$: is the image of x by f.
Consider the following tables of proportionalities:

1) Watch table-1, and complete the adjacent table-2.

g	x	1	2	3
	$y=g(x)$	1.5	3	4.5
	(x, y)			

2) Form the linear function that represent table-2:
$\stackrel{4}{4}$ Table-1: $f: y=0.5 x$
${ }^{4}$) Table-2:
3) What does the ordered pair (x, y) represent graphically? (Point on the graph of the function)
4) Plot on the following orthonormal system of axes the points in table-2:

Table-1.

Table-2.
5) Join the plotted points in system of table-2.
6) What is the formed shape in each system? (straight line)
7) Does their prolongation (extention) pass through the origin? (yes)

Consider the third table:

\%		1	2		
西		3	5		

a) Is the above table a proportionality table? Justify
b) Write an algebraic expression of y as a function of x :
c) Graph the obtained expression:
d) Does its prolongation pass through the origin?
e)
f) Is the formed expression a linear function?

Give two reasons.

1) A linear equation is an expression whose graph is a straight line, so the expression $y=a x$ represents a linear equation
2) The graph of:
() A linear function of equation: $y=a x$ is a straight line passing through origin.
${ }^{4}$ An affine function of equation: $y=a x+b$ is a straight line that does not pass through origin (where $a \& b$ are non-zero real numbers)

Consider the equations the straight lines $\left(d_{1}\right): y=3 x,\left(d_{2}\right): y=2 x,\left(d_{3}\right): y=x,\left(d_{4}\right): y=-x$, $\left(d_{5}\right): y=-\frac{3}{2} x \&\left(d_{6}\right): y=-\frac{x}{2}$.

1) Sort with justification the above equations into two groups (linear and affine functions) :
$\stackrel{y}{4}$ Group- $A:$
\Perp Group- $B:$ \qquad
$\stackrel{y}{\wedge}$ Group- B :
2) Graph in the following orthonormal systems of axes straight lines of

a. Is the direction of $\left(d_{1}\right)$, increasing or decreasing?
b. What can you say about direction of straight lines with negative slope? (decreasing)
3) Compare slopes of:
$\stackrel{\wedge}{\wedge}$ Group-A:
$\stackrel{\wedge}{\Rightarrow}$ Group-B:
\qquad
\qquad
4) Deduce the role of the slope (a) in the equation of the straight line? (Shows the direction of a line)
\Leftrightarrow If $a>0$, then the straight line is
increasing

Conclusions:
If $a<0$, then the straight line is decreasing

5) Consider the straight lines (l): $y=3 x-\sqrt{2} x \&(d): 2 y-3 x+1=0$
a. Determine the slope (slant, director coefficient) of $(l) \&(d)$. (ans: $a_{(l)}=3-\sqrt{2} \& a_{(d)}=\frac{3}{2}$)
b. Which straight line is steeper? Justify. \qquad approaches y-axis

