I- Locating a point on a system of axes:

An orthonormal system of axes ( $\mathrm{x}^{\prime} 0 \mathrm{x} \& \mathrm{y}^{\prime} 0 \mathrm{y}$ ) is a system of two perpendicular axes with the same scale.
where: $\left\{\begin{array}{c}\text { The horizontal axis is called the abscissa axis or } \boldsymbol{x} \text {-axis } \\ \text { The vertical axis is called the ordinate axis or } \boldsymbol{y} \text {-axis }\end{array}\right.$

Note:
The system of axes ( x ' $\mathrm{Ox} \& \mathrm{y}^{\prime} \mathrm{Oy}$ ) cuts the plane into four parts each is called a quadrant.

What do we need to locate a point on a plane?


To locate any point in a plane ( $\mathrm{x}^{\prime} \mathrm{O} \mathrm{x}$ \& y'Oy), we need two components.

| The abscissa | The ordinate |
| :--- | :--- |
| is the $1^{\text {st }}$ component of the ordered pair $(x ; y)$, <br> it gives how far is a point from origin and in <br> which sense is it moving along $x$-axis. | is the $2^{\text {nd }}$ component of the ordered pair $(x ; y)$, <br> it gives how far is a point from origin and in <br> which sense is it moving along $y-$ axis. |


| Point on an orthonormal system of axes $\left(x^{\prime} O x \& y^{\prime} O y\right)$ |  |
| :--- | :--- |
| Form | $A(x ; y)$ |
| Reading | $A$ is a point of coordinates $\mathrm{x} \& \mathrm{y}$ |
| Notes | Value of x, is the abscissa or $1^{\text {st }}$ component <br> Value of $y$, is the ordinate or $2^{\text {nd }}$ component |

Application: Locate (Plot) on the system of axes $\left(x^{\prime} O x \& y^{\prime} O y\right)$ the points $A(2 ; 1) \& B(-4 ; 1)$

| Point to locate | Explanation | Graphically |
| :---: | :---: | :---: |
| $\begin{gathered} A(2 ; 3) \text { on } \\ \left(x^{\prime} O x \& y^{\prime} O y\right) \end{gathered}$ | We start from the origin $O(0 ; 0)$ Since, $x_{A}=+2$ and $y_{A}=+3$, then $1^{\text {st }}$ move along $x$ - axis 2 - steps in + ve sense $1^{\text {st }}$ move along $y$-axis 3 - steps in + ve sense |  |
| $\left.\begin{gathered} B(-4 ; 1) \text { on } \\ \left(x^{\prime} O x \& y^{\prime} O y\right) \end{gathered} \right\rvert\,$ | We start from the origin $O(0 ; 0)$ <br> Since, $x_{A}=-4$ and $y_{A}=+1$, then <br> $1^{\text {st }}$ move along $x$ - axis 4 - steps in - ve sense <br> $1^{\text {st }}$ move along $y$-axis 1 - step in + ve sense |  |

$\mathrm{Ex}_{1}$ : Consider in an orthonormal system of axes ( $x^{\prime} O x \& y^{\prime} O y$ )the points $A, B, C, D, E, F \& G$

1) Determine graphically the coordinates of given points.
2) To which quadrant does each point belong?
$\mathrm{Ex}_{2}$ : Consider the system ( $x^{\prime} O x \& y^{\prime} O y$ ):
3) Locate $A(0 ; 4), B(0 ; 1), D(0 ;-2) \& H(0 ;-2.5)$
4) To which axis do the above points belong?
5) What do you notice about abscissas of above points?

6) What do you conclude?
$\mathrm{Ex}_{3}$ : The plane is considered as the orthonormal system ( $x^{\prime} O x \& y^{\prime} O y$ ):
7) Locate $E(3 ; 0), F(-2 ; 0), J(1.5 ; 0) \& S(-2.5 ; 0)$
8) To which axis do the above points belong?
9) What do you notice about the abscissas of the above points?
10) What do you conclude?

Any point on the $\boldsymbol{x}$-axis, has a zero ordinate $\&$ it is of the form $(x ; 0)$.
Any point on the $\boldsymbol{y}$-axis, has a zero abscissa \& it is of the form $(0 ; y)$.

## II- Lines parallel to either of the coordinate axes:

Reminder: A straight line is a set of infinite number of collinear points in plane.
Ex $x_{1}$ : Consider the orthonormal system of axes $\left(x^{\prime} O x \& y^{\prime} O y\right)$ :

1) Detetmine the coordinates of the points $A, C \& D$.
a. Compare the coordinates of the points $A \& C$ ?
b. What is the relative position of line $(A C) \& y$-axis?
c. What do you conclude?
2) Detetmine the coordinates of the points $B, F \& E$.
a. Compare the coordinates of the points $B \& F$ ?
b. What is the relative position of line $(B F) \& x$-axis?
c. What do you conclude?
d. Complete with best word. (same- different)

Any set of points on a line parallel to $x$-axis have ordinate.

3) Prove that $(B G)$ is parallel to $y^{\prime} O y$.
4) Deduce the relative position of $(A C) \&(B E)$.

Conclusions: 1) Any two points having same ordinate, the line joining them is parallel to $x$-axis.
2) Any two points having same abscissa, the line joining them is parallel to $y$-axis.


III- How to find coordinates of a midpoint?


Ex: Consider in the orthonormal system $\left(x^{\prime} O x \& y^{\prime} O y\right)$ the points: $A(3 ; 4) \& B(-2 ; 1)$

1. Find the coordinates of $I$, the midpoint of $[A B]$.
2. Determine the coordinates of $S$, the symmetric of $A$ with respect to $B$.

IV- Symmetry of a point:

| Symmetry w.r.t | $x$-axis | $y-a x i s$ | Origin |
| :---: | :---: | :---: | :---: |
| Graphically |  |  | $\mathrm{D}^{\prime}=(-3,1)$ |
| What do you notice? | Points have same abscissas, but opposite ordinates | Points have same ordinates, but opposite abscissas | Points have opposite coordinates |
| Coordinates | If $R(a ; b)$ then its symmetry $R^{\prime}(a ;-b)$ | If $S(a ; b)$ then its symmetry $S^{\prime}(-a ; b)$ | If $K(a ; b)$ then its symmetry $K^{\prime}(-a ;-b)$ |

## v- How to find length of a segment?

Consider in orthonormal plane the points

1) Compare:
a. Abscissas of $B \& C$
b. Ordinates of $A \& B$

2) To find length of $A B$, which is \|I $x$-axis, we use: $A B=x_{B}-x_{A}=6-2=4$ units
3) To find length of $B C$, which is \|l $y$-axis, we use: $B C=y_{C}-y_{B}=4-1=3$ units
4) If $A B C$ is right triangle at $B$, then is it true that using Pythagorean theorem, we can write $A C^{2}=\left(x_{C}-x_{A}\right)^{2}+\left(y_{C}-y_{A}\right)^{2}$
5) Use the above rule to find $A C$.

To find the distance between any two points $A\left(x_{A} ; y_{A}\right) \& B\left(x_{B} ; y_{B}\right)$, or the length of $[A B]$
Use the formula:

$$
A B^{2}=\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}
$$

Ex: Consider in the system $\left(x^{\prime} O x \& y^{\prime} O y\right)$ the points: $A(3 ; 4) B(2 ; 1) \& C(5 ; 0)$

1) Plot the given points
2) Find the length of the segments $[A B]$ and $[B C]$.
3) Determine the nature of triangle $A B C$.
4) Calculate the coordinates of $I$, the center of the circle circumscribed about $A B C$.
5) Find the coordinates of $D$, the symmetric of $B$ with respect to $I$.
6) What is the nature of quadrilateral $A B C D$ ? Justify.

## Applications

1) Choose with the appropriate justification the correct answer.

| $\mathcal{N}$ o. | Statements |  | Proposed answers |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | $\mathcal{A}$ | $\mathcal{B}$ | $C$ |  |
| 1. | The lines $x=1 \& x=-1$ are | Parallel | Perpendicular | Parallel to $x^{\prime}$ ox. |  |
| 2. | The lines $x=1 \& y=-3$. are | Parallel | Perpendicular | Parallel to $x^{\prime}$ ox. |  |
| 3. | The line $y=-1$ cuts the $y$-axis at: | 1 | -1 | Does not have |  |
| 4. | The line $y=-3$ passes through | $(0 ;-3)$ | $(-3 ; 0)$ | $(0 ; 0)$ |  |
| 6. | The lines $y=-3$ and $x=2$ intersect <br> at the point | $(-3 ; 2)$ | $(-2 ; 3)$ | $(2 ;-3)$ |  |

2) Consider the following cartesian systems:

3) If $R(3 a-2 ; 1) \& N\left(1 ; b^{2}-4\right)$ are any points in the plane, then determine the values of $a \& b$, so that:
a. $\quad N$ belongs to the $x$-axis
b. $\quad R$ belongs to the $y$-axis
4) If $N(0 ; 1) \& P(a ; a-1)$ are any two points, then find $a$ so that triangle $N O P$ is isosceles $O(0 ; 0)$.
5) Consider in an orthonormal system of axes, the points $A(1 ; 3), B(5 ; 5) \& N(5 ; 3)$.
a) Plot the given points.
b) Compute the coordinates of $I$ the midpoint of $[A B]$.
c) What is the nature of triangle $A B N$ ?
d) Deduce that points $A, B \& N$ belong to a circle ( $\boldsymbol{C}$ ), whose center is to be determined.
6) Consider in the coordinate system $x^{\prime} O x, y^{\prime} O y$ the points: $A(-1 ; 0), B(1 ;-4)$ and $C(-9 ;-4)$.
a. Plot the given points.
b. Determine the nature of the formed triangle.
c. Compute the area of triangle $A B C$.
d. Determine the coordinates of point $I$ the center of gravity of the formed triangle.
$\boldsymbol{e}$. Find the center and the radius of the circle circumscribed about triangle ABC.
$f$. Find the coordinates of point $D$ the fourth vertex of the parallelogram $A B C D$.
7) Consider the points: $R(0 ;-1), P(4 ;-1)$ and $N(2 ; 5)$.
i. Prove that triangle $R P N$ is isosceles of vertex $N$.
ii. Deduce the coordinates of $H$, the orthogonal projection of $N$ on $(R P)$.
