

I- Locating a point on a system of axes:

Def:An orthonormal system of axes (x'Ox & y'Oy) is a system of two
perpendicular axes with the same scale.
where:Where:The horizontal axis is called the abscissa axis or x - axis
The vertical axis is called the ordinate axis or y - axis

Note: The system of axes (x'Ox & y'Oy) cuts the plane into four parts each is called a quadrant.

What do we need to locate a point on a plane?

To locate any point in a plane (x'0x & y'0y), we need <i>two components</i> .				
The abscissa	The ordinate			
is the 1 st component of the ordered pair $(x; y)$,	is the 2^{nd} component of the ordered pair $(x; y)$,			
it gives how far is a point from origin and in	it gives how far is a point from origin and in			
which sense is it moving along $x - axis$.	which sense is it moving along $y - axis$.			

Point on an orthonormal system of axes $(x'Ox \& y'Oy)$		
Form	A(x; y)	
Reading	A is a point of coordinates x & y	
Notes	Value of x, is the abscissa or 1 st component	
	Value of y, is the ordinate or 2^{nd} component	

Application: Locate (Plot) on the system of axes(x'Ox & y'Oy) the points A(2; 1) & B(-4; 1)

Point to locate	Explanation	Graphically
A(2;3) on (x'0x & y'0y)	We start from the origin $O(0; 0)$ Since, $x_A = +2$ and $y_A = +3$, then 1 st move along $x - axis$ 2- steps in +ve sense 1 st move along $y - axis$ 3- steps in +ve sense	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
B(-4; 1) on (x'0x & y'0y)	We start from the origin $O(0; 0)$ Since, $x_A = -4$ and $y_A = +1$, then 1^{st} move along $x - axis$ 4- steps in $-ve$ sense 1^{st} move along $y - axis$ 1- step in $+ve$ sense	$\begin{array}{c} \begin{array}{c} & & & & & & \\ A \\ \hline & & & & & \\ \hline & & & & \\ \hline x' \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$

- Ex₁: Consider in an orthonormal system of axes
 - (x'Ox & y'Oy) the points A, B, C, D, E, F & G
 - 1) Determine graphically the coordinates of given points.
 - 2) To which quadrant does each point belong?

Ex₂: Consider the system (x'Ox & y'Oy):

- 1) Locate A(0; 4), B(0; 1), D(0; -2) & H(0; -2.5)
- 2) To which axis do the above points belong?
- 3) What do you notice about abscissas of above points?
- 4) What do you conclude?

Ex₃: The plane is considered as the orthonormal system (x'Ox & y'Oy):

- 1) Locate E(3; 0), F(-2; 0), J(1.5; 0) & S(-2.5; 0)
- 2) To which axis do the above points belong?
- 3) What do you notice about the abscissas of the above points?
- 4) What do you conclude?

Conclusion: Any point on the x - axis, has a zero ordinate & it is of the form (x; 0). Any point on the y - axis, has a zero abscissa & it is of the form (0; y).

II- Lines parallel to either of the coordinate axes:

Reminder: A straight line is a set of infinite number of collinear points in plane.

Ex₁: Consider the orthonormal system of axes (x'Ox & y'Oy):

- 1) Detetmine the coordinates of the points A, C & D.
 - a. Compare the coordinates of the points A & C?
 - b. What is the relative position of line (AC) & y axis?
 - c. What do you conclude?
- 2) Determine the coordinates of the points B, F & E.
 - a. Compare the coordinates of the points B & F?
 - b. What is the relative position of line (BF) & x axis?
 - c. What do you conclude?
 - d. Complete with best word. (same- different)
- Any set of points on a line parallel to x axis have...... ordinate.
- 3) Prove that (BG) is parallel to y'Oy.
- 4) Deduce the relative position of (AC) & (BE).

Conclusions: 1) Any two points having same ordinate, the line joining them is parallel to x - axis. 2) Any two points having same abscissa, the line joining them is parallel to y - axis.

Graphical study	y = 3 (2, 3) (2, 3)	$x = -1 \hat{x} = 2 x = 3$	
	y = 1 (2, 1) (4, 1)	(-1, 2) * * (3, 2) (2, 1)	
	0 $y = -2 (-1, -2) (3, -2)$	(-1, -1) * ⁰ (2, -1) * ^(3, 0)	
Analytical study	A line parallel to $x - axis$ is of equation $y = cst$	A line parallel to $y-axis$ is of equation $x = cst$	

D

-3 -2 -1 0

G

-2

-3

-5

Rule: To find the coordinates of *I*, the midpoint of [*AB*], where $A(x_A; y_A) \& B(x_B; y_B)$ Use the formulas: $x_I = \frac{(x_A + x_B)}{2}$ and $y_I = \frac{y_A + y_B}{2}$

- Ex: Consider in the orthonormal system (x'Ox & y'Oy) the points: A(3; 4) & B(-2; 1)
 - 1. Find the coordinates of *I*, the midpoint of [*AB*].
 - 2. Determine the coordinates of S, the symmetric of A with respect to B.

IV- Symmetry of a point:

V- How to find length of a segment?

Consider in orthonormal plane the points

- 1) Compare:
 - a. Abscissas of B & C
 - b. Ordinates of A & B
- 2) To find length of AB, which is || x axis, we use: $AB = x_B x_A = 6 2 = 4units$

Нур

(6, 1)

 $y_{C} - y_{B} = 3$

0

- 3) To find length of BC, which is || y axis, we use: $BC = y_C y_B = 4 1 = 3units$
- 4) If *ABC* is right triangle at *B*, then is it true that using Pythagorean theorem, we can write $AC^2 = (x_C x_A)^2 + (y_C y_A)^2$
- 5) Use the above rule to find AC.

Rule: To find the distance between any two points $A(x_A; y_A) \& B(x_B; y_B)$, or the length of [AB] Use the formula:

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

- Ex: Consider in the system (x'Ox & y'Oy) the points: A(3; 4) B(2; 1) & C(5; 0)
 - 1) Plot the given points
 - 2) Find the length of the segments [AB] and [BC].
 - 3) Determine the nature of triangle ABC.
 - 4) Calculate the coordinates of I, the center of the circle circumscribed about ABC.
 - 5) Find the coordinates of D, the symmetric of B with respect to I.
 - 6) What is the nature of quadrilateral ABCD? Justify.

Applications

1) Choose with the appropriate *justification* the correct answer.

No	Statements	Proposed answers		
JV0.		Я	\mathcal{B}	С
1.	The lines $x = 1 \& x = -1$. are	Parallel	Perpendicular	Parallel to $x'ox$.
2.	The lines $x = 1 \& y = -3$. are	Parallel	Perpendicular	Parallel to $x'ox$.
3.	The line $y = -1$ cuts the y-axis at:	1	-1	Does not have
4.	The line $y = -3$ passes through	(0;-3)	(-3;0)	(0;0)
6.	The lines $y = -3$ and $x = 2$ intersect	(-3;2)	(-2;3)	(2;-3)
	at the point		()-)	

2) Consider the following cartesian systems:

- 3) If $R(3a 2; 1) \& N(1; b^2 4)$ are any points in the plane, then determine the values of a & b, so that:
 - a. N belongs to the x axis
 - **b.** R belongs to the y axis
- 4) If N(0; 1) & P(a; a 1) are any two points, then find *a* so that triangle *NOP* is isosceles O(0; 0).
- 5) Consider in an orthonormal system of axes, the points A(1;3), B(5;5) & N(5;3).
 - a) Plot the given points.
 - b) Compute the coordinates of I the midpoint of [AB].
 - c) What is the nature of triangle ABN?
 - d) Deduce that points A, B & N belong to a circle (C), whose center is to be determined.
- 6) Consider in the coordinate system x'Ox, y'Oy the points: A(-1;0), B(1;-4) and C(-9;-4).
 - *a.* Plot the given points.
 - **b.** Determine the nature of the formed triangle.
 - c. Compute the area of triangle ABC.
 - *d*. Determine the coordinates of point *I* the center of gravity of the formed triangle.
 - e. Find the center and the radius of the circle circumscribed about triangle ABC.
 - f. Find the coordinates of point D the fourth vertex of the parallelogram ABCD.
- 7) Consider the points: R(0;-1), P(4;-1) and N(2;5).
 - i. Prove that triangle *RPN* is isosceles of vertex *N*.
 - ii. Deduce the coordinates of H, the orthogonal projection of N on (RP).