Lycée Des Arts Mathematics 9th-Grade Name: "Equation of a Straight Line" A.S-7.2.

Reminders: 1) A straight line is a set of infinite number of collinear points in plane.
2) In a given plane through *two points one and only one* straight *line* can be drawn.

<u>Formula</u>: The equation of a straight line in *slope intercept* form is:

Where, a is the *slope* or slant (director coefficient) of a straight line and, b is the *y*-*intercept*. Application:

Does the equation 2y - 3x = 11 represent an equation of a straight line? Justify and precise slope and y-intercept if possible Soln:

$$2y - 3x = 11$$

$$2y = 3x + 11$$

$$y = \frac{3x}{2} + \frac{11}{2}$$

and b

Yes, since it it is of the form y = ax + b, where $a = \frac{3}{2}$ and $b = \frac{11}{2}$

Ex₁: Indicate which of the following expressions, represent equation (s) of a straight line in plane, then precise its slope and ordinate of origin?

1. $y - 3x = 7$	$2. y = \frac{2}{x} + 1$	$3. y = 5x^2 - 3$	4. $y = 5x$
5. $y = \frac{2x-5}{3}$	6. $2y = x - 6$	$7. y - 4 = \frac{2x}{3}$	$8. \ \frac{2y-3}{x+1} = \frac{2y+1}{x-5}$

\forall What is the slope (a)?

<u>Slope</u>: is the ratio that describes the steepness of a line.

For any straight line in a plane, slope compares the *vertical change*, called the *rise*, to the *horizontal change*, called the *run*.

 $a = \frac{rise}{run}$

How to calculate a slope?

To find the slope compute the y-change Δy , and the x-change Δx , then form the ratio $\frac{\Delta y}{\Delta x}$

Ex₃: Determine the slope of each of the following lines.

1) y - 2x = 13) 2y - 3x = -35) -3x = +12) $3y - x = \sqrt{7}x$ 4) $y - 3x = \sqrt{2}x + 1$ 6) $y = \sqrt{5} + 1 - 3y$

 \checkmark <u>The y-intercept, b</u>: b, is the value at which the line crosses the y - axis:

Selative positions of two straight lines in a plane:

Graphical representation	(s): y = x + 4 $(r): y = 1x + 2$ $(l): y = 1x + 1$ $(m): y = x$ $(r): y = 1x + 1$	(m): y = -1.5x $(l): y = -1.5x + 1$ $(r): y = -1.5x + 1.8$ $(r): y = -1.5x + 1.8$ $(r): y = -1.5x + 1.8$
What is the relative positions of given lines?		
Compare their slopes		
What do you conclude?		

Two lines a plane can be				
	Parallel	Perpendicular		
In words	If lines have equal slopes	If the product of their slopes is -1		
In symbols	$a_1 = a_2$	$a_1 \times a_2 = -1$		
Graphically	Run Rise (r): y = 0.5x + 2 (l): y = 0.5x + 1 (l): y = 0.5x + 1 (l): y = 0.5x + 1	(k) : y = -2x + 2 $(d) : y = 0.5x + 3$ $a = -2$ 1 $a = -2$ 1 1		

Ex₄: Determine the relative positions of the following straight lines:

1) (d):
$$2y - 3x = 12$$
 & (Δ): $y^2 - 3x + 1 = (y - 1)^2$

2) (l):
$$(\sqrt{y-3})^2 = 3x + 1$$
 & (m): $3y + x = 6$

3) (r): y = 2x - 1 & (s): y = -2x + 3

Ex₅: Find the values of a & b so that the lines:

1) $(d_1): y = 2ax + 1 \& (d_2): y - 4ax = 3x - 5$, are parallel.

2) $(l_1): y - bx = 3 \& (l_2): y = (b - 2)x - 1$, are perpendicular.

Ex₆: Find numerical values of *m*, if st. lines of slopes $a_1 = \frac{m-2}{m-3} \& a_2 = m+1$ are perpendicular.