Reminders: 1) A straight line is a set of infinite number of collinear points in plane.

Formula: The equation of a straight line in slope intercept form is:

$$
y=a x+b
$$

Where, \boldsymbol{a} is the slope or slant (director coefficient) of a straight line and, \boldsymbol{b} is the \boldsymbol{y}-intercept. (4) Application:

Does the equation $2 y-3 x=11$ represent an equation of a straight line? Justify and precise slope and y-intercept if possible
Soln:

$$
\begin{gathered}
2 y-3 x=11 \\
2 y=3 x+11 \\
y=\frac{3 x}{2}+\frac{11}{2}
\end{gathered}
$$

Yes, since it it is of the form $y=a x+b$, where $a=\frac{3}{2} \quad$ and $b=\frac{11}{2}$
Ex_{1} : Indicate which of the following expressions, represent equation (s) of a straight line in plane, then precise its slope and ordinate of origin?

1. $y-3 x=7$	2. $y=\frac{2}{x}+1$	3. $y=5 x^{2}-3$	4. $y=5 x$
5. $y=\frac{2 x-5}{3}$	6. $2 y=x-6$	7. $y-4=\frac{2 x}{3}$	8. $\frac{2 y-3}{x+1}=\frac{2 y+1}{x-5}$

4. What is the slope (a)?

Slope: is the ratio that describes the steepness of a line.
For any straight line in a plane, slope compares the vertical change, called the rise, to the horizontal change, called the run.

How to calculate a slope?

To find the slope compute the y-change Δy, and the x-change Δx, then form the ratio $\frac{\Delta y}{\Delta x}$

WATCH OUT! Always use the same order in the numerator and denominator!

(4) Application: Determine the slope of the line passing through points: $A(3,5) \& B(-2 ; 1)$

Soln: $a=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{1-5}{-2-3}=\frac{4}{5}$
Ex_{2} : Consider in an orthonormal system of axes ($x^{\prime} 0 x \& y^{\prime} O y$), the points

$A(-3,4) \& B(2 ; 5)$	$E(-1,4) \& F(-5 ; 2)$	$D(2,3) \& C(1 ; 3)$	$R(-2,5) \& N(-2 ; 1)$
$J(5 ;-3) \& L(-1 ; 2)$	$S(0 ; 2) \& K(-3 ; 0)$	$G(5 ;-1) \& H(1 ;-1)$	$Q(4 ; 1) \& P(4 ;-5)$

1- Determine the slope of lines passing the through each pair of the above points.
2- What can you say about the coordinates of the points: $\left\{\begin{array}{l}a)(D \& C) \text { and }(G \& H) \text { ? } \\ b)(Q \& P) \text { and }(R \& N) ?\end{array}\right.$
3- What are the relative positions of lines: $\left\{\begin{array}{l}a)(D C) \text { and }(G H) \text { with respect to } x \text {-axis? } \\ b)(Q P) \text { and }\end{array}\right.$
4- What do you conclude?
5- Are either of the lines $(A B)$ or $(S K)$ parallel to one of the coordinate axes?
4) Direction of a straight line: The direction of a straight line depends on its slope

Ex_{3} : Determine the slope of each of the following lines.

1) $y-2 x=1$
2) $3 y-x=\sqrt{7} x$
3) $2 y-3 x=-3$
4) $y-3 x=\sqrt{2} x+1$
5) $-3 x=+1$
6) $y=\sqrt{5}+1-3 y$
7) The y-intercept, 6 : b, is the value at which the line crosses the y-axis:

1	If \boldsymbol{b}, is positive, then the line crosses y-axis above (x-axis).

2 If \boldsymbol{b}, is negative, then line
crosses y-axis below (x-axis).

(4) Relative positions of two straight lines in a plane:

Graphical representation		
What is the relative positions of given lines?		
Compare their slopes		
What do you conclude?		

Two lines a plane can be		
	Parallel	Perpendicular
In words	If lines have equal slopes	If the product of their slopes is -1
In symbols	$a_{1}=a_{2}$	$a_{1} \times a_{2}=-1$
Graphically		

Ex4: Determine the relative positions of the following straight lines:

1) $(d): 2 y-3 x=12 \&(\Delta): y^{2}-3 x+1=(y-1)^{2}$
2) $(l):(\sqrt{y-3})^{2}=3 x+1 \quad \& \quad(m): 3 y+x=6$
3) $(r): y=2 x-1 \quad \&(s): y=-2 x+3$

Ex5: Find the values of $a \& b$ so that the lines:

1) $\left(d_{1}\right): y=2 a x+1 \&\left(d_{2}\right): y-4 a x=3 x-5$, are parallel.
2) $\left(l_{1}\right): y-b x=3 \&\left(l_{2}\right): y=(b-2) x-1$, are perpendicular.

Ex $_{6}$: Find numerical values of m, if st. lines of slopes $a_{1}=\frac{m-2}{m-3} \& a_{2}=m+1$ are perpendicular.

