Reminder: A straight line is a set of infinite number of collinear points in plane.

I- How to prove that three points in a plane are collinear?

To prove that three points in a plane are collinear we have two main strategies:

Strategy	1	2
	If any of the two points are on a given line	If you are given any 3 points
Method	Just prove that the $3^{\text {rd }}$ point is on the line, by replacing its coordinates in eqn of given line.	Just prove that the 3 points have equal slopes.
Application	Ques: Prove that $A, B \& C$ collinear, so that $(A B): y=2 x-3 \& C(2 ; 1)$	Ques: Prove that A, B \& C collinear, so that $A(1 ; 3), B(4 ; 2) \& C(7 ; 1)$
	Soln: $(A B): y=2 x-3 \& C(2 ; 1)$ C is on $(A B)$, if its coordinates fit in eqn of (d) $\begin{gathered} y_{C}=2 x_{C}-3 \\ 1 ? 2(2)-3 \\ 1=1 \end{gathered}$ Thus, points $A, B \& C$ are collinear.	Soln: $a_{(A B)}=a_{(A C)}$ $\begin{aligned} \frac{y_{B}-y_{A}}{x_{B}-x_{A}} & =\frac{y_{C}-y_{A}}{x_{C}-x_{A}} \\ \frac{2-3}{4-1} & \stackrel{?}{7-3} \\ \frac{-1}{3} & =\frac{-2}{6} \end{aligned}$ Thus, points $A, B \& C$ are collinear.

II- How to determine the equation of a straight line in plane?

$\mathcal{A} t$ this level to determine the equation of a line we need			
The coordinates of two points $A\left(x_{A} ; y_{A}\right) \& B\left(x_{B} ; y_{B}\right)$	Or	Coordinates of a point and a slope	
$A\left(x_{A} ; y_{A}\right) \& a$			

> To find equation of a straight line it is sufficient to use one of the following combinations:

Given information			
Line passing through two given points $A\left(x_{A} ; y_{A}\right) \& B\left(x_{B} ; y_{B}\right)$	\checkmark Take any point $M(x, y)$ on the given straight line. Now, points A, B \& M are collinear, Then $a_{(A M)}=a_{(A B)}$ Thus, $\frac{y-y_{A}}{x-x_{A}}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}$		
Line passing through a given point $A\left(x_{A} ; y_{A}\right)$ and knowing its slope (director coefficient)	\checkmark Take any point $M(x, y)$ on the given straight line. $\frac{y-y_{A}}{x-x_{A}}=a \quad \text { OR } \quad y-y_{A}=a\left(x-x_{A}\right)$		
Line passing through two given points $A\left(x_{A} ; h\right) \& B\left(x_{B} ; h\right)$ having same ordinates.			
Line passing through two given points $A\left(v ; y_{A}\right) \& B\left(v ; y_{B}\right)$ having same abscissas.	$A\left(x_{A} ; h\right) \& B\left(x_{B} ; h\right)$ have same abscissa so, $(A B) \\| y$ - axis thus, $(A B): x=v$		

Exercises

1) Consider in the system $\left(x^{\prime} O x \& y^{\prime} O y\right)$ the points: $A(3 ; 4) B(2 ; 1) \& C(5 ; 0)$
a. Plot the given points.
b. Prove by calculation that given points are not collinear.
2) Find the numerical value of m, so that the given points $A(2 ; m) B(1 ; 1) \& C(m ; 5)$ are collinear.
3) Determine the equation of the straight line (d) in each of the following cases and trace it:
a. Passing through the points: $A(-3 ; 2) \& B(3 ; 5)$.
b. Passing through the points: $M(4 ; 1) \& N(4 ;-2)$.
c. Passing through the points: $E(2 ; 1)$ \&. $F\left(\frac{2}{3} ; 1\right)$.
d. Passing through the points: $S(2 ; 3) \& K(4 ; 6)$.
4) Determine the equation of the straight line (r) in each of the following cases:
a. The parallel to $(l): y-3 x=\sqrt{2} x+1$ and passing through the point $B\left(\frac{3}{2} ;-\frac{1}{2}\right)$
b. The perpendicular to $(n): 4 x-2 y+3=0 \&$ passing through point $E(5,-1)$.
c. The perpendicular bisector of the segment $[\mathrm{AB}]$, where $A(1 ;-2) \& B(2 ; 3)$.
