_			9
μ	Lycée Des Arts	Mathematics	9 th -Grade
	Name:	"Equation of a straight line"	A.S-7.4.

Reminder: A straight line is a set of infinite number of collinear points in plane.

I- How to prove that three points in a plane are collinear?

To prove that three points in a plane are collinear we have two main strategies:

Strategy	1	2
Strategy	If any of the two points are on a given line	If you are given any 3 points
Method	Just prove that the 3 rd point is on the line, by	Just prove that the 3 points have
wiethou	replacing its coordinates in eqn of given line.	equal slopes.
	Ques: Prove that A, B & C collinear, so that	Ques: Prove that <i>A</i> , <i>B</i> & <i>C</i> collinear,
	(AB): y = 2x - 3 & C(2; 1)	so that $A(1; 3), B(4; 2) \& C(7; 1)$
		Soln: $a_{(AB)} = a_{(AC)}$
	Soln: (AB) : $y = 2x - 3 \& C(2; 1)$	$y_B - y_A - y_C - y_A$
Application	C is on (AB) , if its coordinates fit in eqn of (d)	$\overline{x_B - x_A} = \overline{x_C - x_A}$
Application	$y_c = 2x_c - 3$ 1 = 2(2) - 3	$x_B - x_A x_C - x_A$ 2 - 3 ? 1 - 3
		$\frac{1}{4-1} = \frac{1}{7-1}$
	1 = 1 🗸	-1 -2
	Thus, points A, B & C are collinear.	$\overline{3} = \overline{6}$
		Thus, points A, B & C are collinear.

II- How to determine the equation of a straight line in plane?

	1 5	0	1				
	At this level to determine the equation of a line we need						
	The coordinates of two points	Or	Coordinates of a point and a slope				
	$A(x_A; y_A) \& B(x_B; y_B)$	01	$A(x_A; y_A) \& a$				
To	To find equation of a straight line it is <i>sufficient</i> to use <i>one</i> of the following <i>combinations</i> :						

Given information	Formula used and steps to follow	Figures				
Line passing through two given points $A(x_A; y_A) \& B(x_B; y_B)$	✓ Take any point $M(x, y)$ on the given straight line. Now, points <i>A</i> , <i>B</i> & <i>M</i> are collinear, Then $a_{(AM)} = a_{(AB)}$ Thus, $\frac{y-y_A}{x-x_A} = \frac{y_B-y_A}{x_B-x_A}$	$\begin{array}{c} 2 \mathbf{y} \\ \mathbf{M} $				
Line passing through a given point $A(x_A; y_A)$ and knowing its slope (director coefficient)	✓ Take any point $M(x, y)$ on the given straight line. $\frac{y - y_A}{x - x_A} = a$ OR $y - y_A = a(x - x_A)$	$y \qquad (d)$ $\frac{1}{j} \qquad (d)$ $m = 0.5$ $\frac{1}{j} \qquad x$ $\frac{1}{j} \qquad 1 \qquad x$				
Line passing through two given points $A(x_A; h) \& B(x_B; h)$ having same ordinates.	✓ $A(x_A; h) \& B(x_B; h)$ have same ordinate so, (AB) x - axis thus, (AB): y = h	y = 3 (-2, 3) $y = 1 (2, 1) (4, 1)$ $y = -2 (-1, -2) (3, -2)$				
Line passing through two given points $A(v; y_A) \& B(v; y_B)$ having same abscissas.	✓ $A(x_A; h) \& B(x_B; h)$ have same abscissa so, $(AB) \parallel y - axis$ thus, $(AB): x = v$	$x = -1 x = 2 \qquad x = 3$ $(-1, 2) = (2, 1) = (3, 2)$ $(-1, -1) = (0, -1) = (3, 0)$				

 \geq

Exercises

- 1) Consider in the system (x'Ox & y'Oy) the points: A(3; 4) B(2; 1) & C(5; 0)
 - a. Plot the given points.
 - b. Prove by calculation that given points are not collinear.
- 2) Find the numerical value of *m*, so that the given points A(2; m) B(1; 1) & C(m; 5) are collinear.
- 3) Determine the equation of the straight line (d) in each of the following cases and **trace it**:
 - a. Passing through the points: A(-3; 2) & B(3; 5).
 - b. Passing through the points:M(4; 1) & N(4; -2).
 - c. Passing through the points: $E(2; 1) \& F(\frac{2}{3}; 1)$.
 - d. Passing through the points:S(2; 3) & K(4; 6).
- 4) Determine the equation of the straight line(r) in each of the following cases:
 - a. The parallel to (l): $y 3x = \sqrt{2}x + 1$ and passing through the point $B(\frac{3}{2}; -\frac{1}{2})$
 - b. The perpendicular to (n): 4x 2y + 3 = 0 & passing through point E(5, -1).
 - c. The perpendicular bisector of the segment [AB], where A(1; -2) & B(2; 3).