Al-Mandi High School Name:
Mathematics
Limit of a function
$11^{\text {th }}$-Grade A.S-7

I- Consider in an orthonormal system of axes $(O, \vec{i}, \vec{j})$ the numerical function $f$ defined by: $x \longrightarrow 3 x$ and its representative curve $C_{f}$ in $\mathbb{R}$.
a. Trace $C_{f}$.
$b$. Pick up the convenient properties of the function $f$ and justify each:
$\checkmark f$ is an even function.
$\checkmark C_{f}$ is symmetric with respect to origin.
$\checkmark f$ is defined over $\mathbb{R}$.
$\checkmark f$ is a quadratic function.
$\checkmark f$ is a linear function.
$\checkmark f$ is constant.
$\checkmark f$ is increasing.
c. Use $C_{f}$ to complete the following table:

| $x=\alpha$ | -3 | -2 | 0 | 1 | 2 | 3 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(\alpha)$ |  |  |  |  |  |  |  |

d. Find algebraically:
i. $\quad f(10), f(30) \& f\left(10^{7}\right)$
ii. $\quad f(-10), f(-50) \& f(-2500)$
$e$. How do you describe the behavior of $f(x)$ as $x$ approaches (tends) to a very big number?
$f$. How do you describe the behavior of $f(x)$ as $x$ approaches (tends) to a very small number?
g. Calculate the numerical value of $f(x)$ as $x$ tends (goes to ) 5 .

The above statement can be presented as:

$$
\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(3 x)
$$

