

If you were not able to do it, then learning the following objectives might do

Introduction:

<u>Thales' Property</u>, states that "Any straight line drawn <u>parallel</u> to one side of a triangle, divides the other two sides <u>proportionally</u>"

A. Preliminary Exercise:

 $\mathcal{E}x_{l}$: In the adjacent figure, points M & N are the respective midpoints of [AB]&[AC]. 1) What is the relative positions of (MN)&(BC)? Justify.

3) Choose the only correct answer Compare the formed ratios:

- i. Equal.
- ii. Not equal.
- iii. Negative
- 4) Cross out the wrong answer:

We notice that the straight line joining (any points; midpoints) of two sides of a (triangle; rectangle) divides the (sides; angles) in a ratio equals (half; three quarters)

5) Rewrite the above statement

.....

*Ex*₂:In the adjacent figure (*d*) & (*d'*) are two intersecting straight lines at *A*. (*d*₁), (*d*₂) & (*d*₃) are three parallel straight lines, so that AE = 2.5cm.

1- Compute if possible the following ratios:

Ratios formed by segments on:			
Ratios	Straight line(d)	Straight line(d')	
1 st - set	$\frac{AD}{AE} =$	$\frac{AG}{AF} =$	
2^{nd} - set	$\frac{AE}{AB} =$	$\frac{AF}{AC} =$	
$(ans: \frac{AD}{AD} = \frac{AG}{AG} = \frac{2}{2} \cdot \frac{AE}{AE} = \frac{AF}{AF} = \frac{5}{2})$			

(ans: $\frac{1}{AE} = \frac{1}{AF} = \frac{1}{5}; \frac{1}{AB} = \frac{1}{AC} - \frac{1}{7}$) 2- Compare the 1st - set of ratios.

3- Now, compare the ratios of 1st - set with
$$\frac{DG}{ET}$$

4- Underline the correct answer?

We conclude that, any straight line drawn (perpendicular; parallel) to a side of a (quadrilateral; triangle) divides the other sides (proportionally; equally)

5- Find using the 2^{nd} - set of ratios, the measure of segment [AC].

(ans: AC = 5.25cm)

B. Statement:

<u>**Thales' Property</u>**, states that "Any straight line drawn <u>parallel</u> to one side of a triangle, divides the other two sides <u>proportionally</u>"</u>

C. Usage or Goals of:

Thales' property

- *1*. Find measure of a segment.
- **2.** Establish a relation between sides. (A side is double the other or so)
- **3.** Detect if a ratio is constant or variable.
- **4.** Locating a point on a line or a segment.

D. Ratios of Thales':

	Geometric approach	AnalytiC approach
Triangular – Configuration	If the points $R \& N$ are placed on same side of points $B \& C$, such that: $(RN)//(BC)$ then,	<i>a.</i> If taken from <u>main vertex</u> : $ \frac{AR}{AB} = \frac{AN}{AC} = \frac{RN}{BC} = \begin{cases} i - \frac{AR}{AB} = \frac{AN}{AC} (\text{From ratios 1 \& 2}) \\ ii - \frac{AR}{AB} = \frac{RN}{AC} (\text{From ratios 1 \& 3}) \\ iii - \frac{AR}{AB} = \frac{RN}{BC} (\text{From ratios 2 \& 3}) \\ iii - \frac{AN}{AC} = \frac{RN}{BC} (\text{From ratios 2 \& 3}) \end{cases} $ <i>b.</i> If taken from <u>extremities</u> of one of the parallel lines: $i - \frac{RA}{RB} = \frac{NA}{NC} OR \frac{RB}{RA} = \frac{NC}{NA} (\text{Starting from inner line}) \\ ii - \frac{BR}{BA} = \frac{CN}{CA} OR \frac{BA}{BR} = \frac{CA}{CN} (\text{Starting from base line}) $
X-Configuration		If $M \& N$ are any two points placed on the other side of points $B \& C$, such that: $(MN)//(BC)$ then, $\frac{AM}{AC} = \frac{AN}{AB} = \frac{MN}{BC}.$

✓ <u>Converse of Thales' Property</u>:

"If two sides of a triangle are cut by a section of a straight line *proportionally*, then this line is *parallel* to the third side of the given triangle."

Summary

Statement, conditions & Uses of Converse of Thales'

Statement: "If two sides of a triangle are cut by a section of a straight line *proportionally*, then this line is *parallel* to the third side of the given triangle."

Conditions: To apply **Converse Thales' theorem**:

- 1. Measure of at least four segment
- 2. Two sets of collinear points.

Usages: Prove Parallel lines

Now, Can you answer the questions of the Critical thinking part?

 $(ans: \frac{3.46}{104.02} = \frac{2}{height} (using Thales' Property))$