Critical Thinking

If you were not able to do $i t$, then Cearning the following objectives might do

Introduction:

Thales' Property, states that "Any straight line drawn parallel to one side of a triangle, divides the other two sides proportionally"
A. Preliminary Exercise:
$E x_{1}$: In the adjacent figure, points $M \& N$ are the respective midpoints of $[A B] \&[A C]$.

1) What is the relative positions of $(M N) \&(B C)$? Justify.
\qquad
2) Find the ratios of: $A M$ to $A B, A N$ to $A C \& M N$ to $B C$.

3) Choose the only correct answer

Compare the formed ratios:
i. Equal.
ii. Not equal.
iii. Negative
4) Cross out the wrong answer:

We notice that the straight line joining (any points; midpoints) of two sides of a (triangle; rectangle) divides the (sides; angles) in a ratio equals (half; three quarters)
5) Rewrite the above statement
$E x_{2}:$ In the adjacent figure $(d) \&\left(d^{\prime}\right)$ are two intersecting straight lines at $A .\left(d_{1}\right),\left(d_{2}\right) \&\left(d_{3}\right)$ are three parallel straight lines, so that $A E=2.5 \mathrm{~cm}$.
1- Compute if possible the following ratios:

Łatios formed by segments on:		
æatios	Straight line (d)	Straight line $(d$ ')
st - set	$\frac{A D}{A E}=$	$\frac{A G}{A F}=$
	$\frac{A E}{A B}=$	$\frac{A F}{A C}=$
(ans: $\frac{A D}{A E}=\frac{A G}{A F}=\frac{2}{5} ; \frac{A E}{A B}=\frac{A F}{A C}=\frac{5}{7}$)		

2- Compare the $1^{\text {st }}-$ set of ratios.
3- Now, compare the ratios of $1^{\text {st }}-$ set with $\frac{D G}{E F}$.
4- Underline the correct answer?
We conclude that, any straight line drawn (perpendicular; parallel) to a side of a (quadrilateral; triangle) divides the other sides (proportionally; equally)
5- Find using the $2^{\text {nd }}-$ set of ratios, the measure of segment $[A C]$.
\qquad
(ans: $A C=5.25 \mathrm{~cm}$)

B. Statement:

Thales' Property, states that "Any straight line drawn parallel to one side of a triangle, divides the other two sides proportionally"
C. Usage or Goals of:

Thales' property

1. Find measure of a segment.
2. Establish a relation between sides. (A side is double the other or so)
3. Detect if a ratio is constant or variable.
4. Locating a point on a line or a segment.
D. Ratios of Thales':

	Geometric approach	Analytic approach
	If the points $R \& N$ are placed on same side of points $B \& C$, such that: $(R N) / /(B C)$ then,	a. If taken from main vertex: $\frac{A R}{A B}=\frac{A N}{A C}=\frac{R N}{B C}=\left\{\begin{array}{l} i-\frac{A R}{A B}=\frac{A N}{A C}(\text { From ratios } 1 \& 2) \\ i i-\frac{A R}{A B}=\frac{R N}{B C}(\text { From ratios } 1 \& 3) \\ i i i-\frac{A N}{A C}=\frac{R N}{B C}(\text { From ratios } 2 \& 3) \end{array}\right.$ b. If taken from extremities of one of the parallel lines: $\begin{aligned} & i-\frac{R A}{R B}=\frac{N A}{N C} \overline{O R \frac{R B}{R A}=\frac{N C}{N A}} \text { (Starting from inner line) } \\ & i i-\frac{B R}{B A}=\frac{C N}{C A} O R \frac{B A}{B R}=\frac{C A}{C N}(\text { Starting from } \underline{\text { base line })} \end{aligned}$
		If $M \& N$ are any two points placed on the other side of points $B \& C$, such that: $(M N) / /(B C)$ then, $\frac{A M}{A C}=\frac{A N}{A B}=\frac{M N}{B C} .$

Converse of Thales' Property:

"If two sides of a triangle are cut by a section of a straight line proportionally, then this line is parallel to the third side of the given triangle."

$I F: \frac{A M}{A C}=\frac{A N}{A B}$	$I F: \frac{A M}{A B}=\frac{A N}{A C} \operatorname{or} \frac{A M}{A B}=\frac{M N}{B C} \operatorname{or} \frac{A N}{A C}=\frac{M N}{B C}$

Summary

Statement, conditions \& Uses of Converse of Thales'

Statement: "If two sides of a triangle are cut by a section of a straight line proportionally, then this line is paralle/ to the third side of the given triangle."

Conditions: To apply converse Thales' theorem:

1. Measure of at least four segment
2. Two sets of collinear points.

Usages: Prove Parallel lines

Now, can you answer the questions of the critical thinking part?

(ans: $\frac{3.46}{104.02}=\frac{2}{\text { height }}($ using Thales' Property $)$)

