1) Classify the real numbers: 3, -5, 0, -2, 1.2, -4, -1.1 & 7, according to their signs.

2) Find the squares of the real numbers:

The real numbers	3	-5	-4	-2	-1.1	0	1.2	7
Their squares								

3) Can you find a real number in which its square is negative?

<u>Conclusion</u>: The square of a real number

••••••

4) Consider the following *couples* of real numbers:

1 st – couple	2 nd - couple	3 rd - couple	4 th - couple
2&-2	3 & - 3	$\frac{1}{5}$ & $-\frac{1}{5}$	a & – a

Complete the statement below. What does each of the above couples represent? Justify. They are.....since, their sum is

5) Complete the following table:

	1 st - 0	couple	2^{nd} - couple		3 rd - couple		4 th - couple	
Numbers	2	-2	3	-3	$\frac{1}{5}$	$-\frac{1}{5}$	а	-a
Their squares								

6) What do you notice about the squares of the above opposite numbers?

<u>Conclusion</u>: A real number and its opposite admit the same square.

Mathematics - Activity sheet - Grade 8. April 9, 2022

7) $Q \in \mathcal{A}$ table:

1.	List sixteen real squared numbers	
2.	What is a squared number?	A number

8) Find the real numbers whose squares are presented in the following table:

Numbers	0	1	4	9	16	100	3600	0.09	0.0016
Square form		$(-1)^2$ $(+1)^2$							
Sign of base		-ve +ve							

ulate	Since the	-1&+1	is equal to	1	than	-1&+1	are called the	1
Post	square of $-7 \& + 7$	is equal to	49	then	-7&+7	square roots of	49	

Def: If ais any real positive number, then there exist a number whose square is a

	1-cm ²	$9 cm^2$	-46-6772
--	-------------------	----------	----------

Outlusions: How many square roots does a real number admit? Discuss.

Type of the number	Number & sign of the roots if they exist	Give example
Positive real number	Admits two square roots one is positive the other is	Square roots of 16 are 4 & -4
Negative real number		
Zero (null)	Has one square root only itself	Square root of 0 is