Reminder: Postulate

Since the square of	$-1 \&+1$	is equal to	1	then	$-1 \&+1$	are called the square roots of	1

$\stackrel{H}{b}$ What is a radical?

We define the radical of a number by the positive square root of a positive real number.
Eg: Radical(4) $=2$
Radical(9) $=3$

1) Observe the above and compute the following:

- Radical(121) =
- Radical(81) =
- Radical(225) =
- Radical(49) =. .
\qquad

Instead of writing radical (25) we can use the symbol, $\sqrt[2]{25}$ or simply $\sqrt{25}$.
$\stackrel{\wedge}{\gamma}$ Reading: $\sqrt{7}$: we read it as radical 7 or square root of 7
$\stackrel{4}{\triangleleft}$ Terminology: $\sqrt[\text { index } \rightarrow 2]{a} \underset{\leftarrow \text { radicand }}{\leftarrow \text { radical }}$ where a is any positive real number
2) Use your calculator to calculate the following:

曲

$\checkmark \sqrt{16}=\ldots \ldots \ldots \ldots$	is $(16)^{\frac{1}{2}}=$
$\checkmark \sqrt{25}=\ldots \ldots \ldots \ldots$	$\Rightarrow(25)^{\frac{1}{2}}=$
$\checkmark \sqrt{64}=$	is $(64)^{\frac{1}{2}}=$.

a) What do you notice?
b) What do you conclude? \qquad
"o" Comclusiton: radicals are nothing but fractional powers

To calculate the radical of a positive real number, we have two cases:
Case-1: If the number can be written in form of even exponent:

Process	Examples		
Express number in form of	$\sqrt{64}=$	$\sqrt{10000}=$	$\sqrt{0.04}=$
1) Even exponent	$=\sqrt{8^{2}}$	$=\sqrt{10^{4}}$	$=\sqrt{2^{2} \times 10^{-2}}$
2) Divide exponent by 2 to get radicand out	$=8$	$=10^{2}$	$=2 \times 10^{-1}$

Case-2: If number can be not be written in form of even exponent:

Process	Examples	
Express number in form of	$\sqrt{8}=$	$\sqrt{100000}=$
1) A product of even exponent and exponent (1)	$=\sqrt{2^{2} \times 2^{1}}$	$=\sqrt{10^{4} \times 10^{1}}$
2) Divide even exponent by 2 to get radicand out and keep radicand of power 1 inside radical sign	$=2 \sqrt{2}$	$=10^{2} \sqrt{10^{1}}$

3) Correct the following false statements:
a) A non-zero real number admits two square roots.
b) To find the square root of a number, we divide it by 2 .
c) 2 is the square root of -4
4) Determine the following: (show your work)

$\sqrt{0}=$	$\sqrt{12}=$	$\sqrt{100}=$
$\sqrt{1}=$	$\sqrt{18}=$	$\sqrt{0.0001}=$
$\sqrt{4}=$	$\sqrt{27}=$	$\sqrt{10^{7}}=$
$\sqrt{49}=$	$\sqrt{24}=$	$\sqrt{10^{-5}}=$
$\sqrt{169}=$	$\sqrt{48}=$	$\sqrt{900}=$
$\sqrt{144}=$	$\sqrt{225}=$	$\sqrt{40000}=$
$\sqrt{81}=$	$\sqrt{56}=$	$\sqrt{1200}=$
	RadicalS and CalCulators:	

Definition: An irrational number is a number whose decimal part is unlimited and not periodic Eg:

$$
\text { 3. } \text { not limited \& non-periodic }_{2157987115683452 \ldots}
$$

5) Use your calculator to find:

Numbers	$\sqrt{2}$	$\sqrt{4}$	$\sqrt{8}$	$\sqrt{16}$	$\sqrt{13}$
Describe the decimal part					
Is it a rational number?					

-อ Comelusion: if radicand can not be written in form of an even power then its outcome is called an irrational number.

