
-○ Reminder: Radicals are nothing but fractional powers so whatever works with powers basically works with radicals

Operations on radicals

A. Multiplication and division:

\& How to express $\sqrt{b} \times \sqrt{d}$, where $c \& d$ are positive real numbers in form of one radical

1. Observe and write in form of one radical (one power):

One exponent	$2^{3} \times 5^{3}=(5)^{3}$	$11^{7} \times 3^{7}=$	$\frac{14^{5}}{9^{5}}=\left(\frac{14}{9}\right)^{5}$	$\frac{17^{8}}{21^{8}}=$
One radical	$\sqrt{7} \times \sqrt{3}=\sqrt{7 \times 3}$	$\sqrt{2} \times \sqrt{13}=$	$\frac{\sqrt{5}}{\sqrt{11}}=\sqrt{\frac{7}{11}}$	$\frac{\sqrt{15}}{\sqrt{13}}=$

it Ex-1. Observe and express in simplest form possible:

$$
\begin{array}{lll}
\sqrt{3} \times \sqrt{3}=(\sqrt{3})^{2}=3 & \sqrt{5} \times \sqrt{12}=\sqrt{5} \times \sqrt{2^{2} \times 3}=2 \sqrt{15} \\
\sqrt{5} \times \sqrt{5}= & \sqrt{7} \times \sqrt{18}= & \sqrt{5} \times \sqrt{5}= \\
\sqrt{11} \times \sqrt{11}= & \sqrt{13} \times \sqrt{50}= & \sqrt{7} \times \sqrt{18}=
\end{array}
$$

\& How to express $a \sqrt{b} \times b \sqrt{d}$ in form of $e \sqrt{f}$, where $c, d \& f$ are positive real numbers

To express $a \sqrt{b} \times b \sqrt{d}$, in form of $e \sqrt{f}$

We multiply coefficient by coefficient and radicand by radicand

$$
3 \sqrt{5} \times 2 \sqrt{7}=(3 \times 2) \sqrt{5 \times 7}=6 \sqrt{35}
$$

is Ex-2. Observe and write in form of $e \sqrt{f}$, where f is a positive real number:

$$
\begin{array}{ll}
2 \sqrt{3} \times 5 \sqrt{7}=(2 \times 5) \sqrt{3 \times 7}=10 \sqrt{21} & 3 \sqrt{5} \times 2 \sqrt{15}=6 \sqrt{5^{2} \times 3}=30 \sqrt{3} \\
2 \sqrt{11} \times 7 \sqrt{3}= & 3 \sqrt{6} \times 5 \sqrt{8}= \\
-2 \sqrt{5} \times 3 \sqrt{2}= & 13 \sqrt{6} \times \sqrt{8}=
\end{array}
$$

-๑ Comdluston: if $a \geq 0 \& b>0$ then we can write

Expression	Algebraically	In words
$\sqrt{a} \times \sqrt{a}$	a	Multiplying the radical by itself gets the radicand out
$\sqrt{a} \times \sqrt{b}$	$\sqrt{a \times b}$	To multiply two radicals, we multiply the radicand
$a \sqrt{b} \times b \sqrt{d}$	$(a \times b) \sqrt{b \times d}$	We multiply coefficient by coefficient and radicand by radicand

$\frac{\sqrt{a}}{\sqrt{b}}$	$\sqrt{\frac{a}{b}}$	To divide two radicals, we divide the radicands

B. Addition and subtraction:

Observe how we can express the following in simplest form possible:

Expression	Detailed solution	Explanation
$2 x+3(x+1)$	$\underbrace{2 x}+\underbrace{3 x}+3=5 x+3$	Add coefficients of similar monomials
$2 \sqrt{7}+3(\sqrt{7}+1)$	$2 \sqrt{7}+3 \sqrt{7}+3=5 \sqrt{7}+3$	Add coefficients of terms with same radicands

Application:

Ex-3.
Use a calculator to compute and many other similar examples of your choice

Expressions	Answer	Generalization
$A=3 \sqrt{2}+5 \sqrt{2}$		
$B=2 \sqrt{3}-7 \sqrt{3}$		
$C=-3 \sqrt{5}+11 \sqrt{20}$		
$D=-5 \sqrt{2}+7 \sqrt{2}+3 \sqrt{8}$		

Ex-4.
Express without using calculator the following in simplest form possible:

Expressions	
$E=5 \sqrt{3}+7 \sqrt{3}$	
$F=-2 \sqrt{5}-3 \sqrt{45}$	
$\mathrm{G}=-3 x \sqrt{2}+11 x \sqrt{8}$	
$\mathrm{H}=5 \sqrt{2 x-1}+7 \sqrt{18 x-9} \quad x>1$	

"○○" \mathbb{C} Comclusion: if $a \geq 0$, then we can write $b \sqrt{a}+c \sqrt{a}=(b+c) \sqrt{a}$

C. Rationalization:

\checkmark Def: Rationalization is to eliminate the radical sign
\checkmark To rationalize the denominator is to eliminate the radical from the denominator
\checkmark How to rationalize?

- To rationalize we multiply both numerator and denominator of the fraction by the conjugate of the denominator
$\stackrel{\wedge}{\Rightarrow}$ Reminder: $(a+b)(a-b)=a^{2}-b^{2}$
Find the term (factor), that if multiplied by the given term (factor) the radical will be eliminated:

No.	Term	Its conjugate	Product of the term by its conjugate	In general, Conjugate of
1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2} \times \sqrt{2}=2$	\sqrt{a} is \sqrt{a}
2	$3 \sqrt{5}$	$\sqrt{5}$	$3 \sqrt{5} \times \sqrt{5}=15$	$b \sqrt{a}$ is \sqrt{a}
3	$3 \sqrt{2}-2 \sqrt{3}$	$3 \sqrt{2}+2 \sqrt{3}$	$(3 \sqrt{2})^{2}-(2 \sqrt{3})^{2}=6$	$(b \sqrt{a}-c \sqrt{d})$ is $(b \sqrt{a}+c \sqrt{d})$
4	$2 \sqrt{5}+1$	$2 \sqrt{5}-1$	$(2 \sqrt{5})^{2}-(1)^{2}=19$	$(b \sqrt{a}+c \sqrt{d})$ is $(b \sqrt{a}-c \sqrt{d})$

Application: Observe how we can eliminate the radical from the denominator of:
(Rationalize the denominator)

$$
\begin{aligned}
& \checkmark \frac{3-\sqrt{2}}{\sqrt{5}}=\frac{3-\sqrt{2}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}-\sqrt{10}}{5} \\
& \checkmark \frac{1+3 \sqrt{5}}{\sqrt{5}-1}=\frac{(1+3 \sqrt{5})}{(\sqrt{5}-1)} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}=\frac{1+\sqrt{5}+3 \sqrt{5}+3(\sqrt{5})^{2}}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{1+4 \sqrt{5}+3(5)}{(\sqrt{5})^{2}-(1)^{2}}=\frac{16+4 \sqrt{5}}{4}=\frac{4(4+\sqrt{5})}{4}=4+\sqrt{5}
\end{aligned}
$$

Ex-5. Rationalize the following:

1) $\frac{5-7 \sqrt{6}}{3 \sqrt{2}}$
2) $\frac{3-2 \sqrt{5}}{2 \sqrt{3}-1}$
3) $\frac{5-2 \sqrt{3}}{2 \sqrt{3}-3 \sqrt{2}}$

Reminder:

Ex-6: Compute: $(3+5)^{2}=\ldots \ldots \ldots . \quad\left(3^{2}-2^{2}\right)^{2}=\ldots \ldots \ldots$.
Ex-7. Calculate:

Values of $a \& b$	$\sqrt{a^{2}+b^{2}}$	$\sqrt{a^{2}}+\sqrt{b^{2}}$	Compare: $\sqrt{a^{2}+b^{2}} \& \sqrt{a^{2}}+\sqrt{b^{2}}$
$a=1 \& b=1$			
$a=5 \& b=-4$			
$a=4 \& b=5$			

a) What do you notice?
b) Is it true that: $\sqrt{a \pm b} \leq \sqrt{a}+\sqrt{b}$?
c) Complete the following table:

Compute the numerical value of	For $x=1$	For $x=0$	For $x=3$	For $x=5$
$A=\sqrt{(x-2)^{2}}$				

i - Is it true that $\sqrt{(x-2)^{2}}=x-2$, for all real values of x ? Explain.
ii- For what values of x, is $A=0$?
iii- Express $\sqrt{(x-2)^{2}}$ without radical sign. (indicate all cases)
\qquad
\qquad
\qquad

$$
\text { Remark: } \sqrt{a^{2}}= \begin{cases}\text { itself }:+a & \text { if and only if } a>0 \\ \text { its opp: }-a & \text { if and only if } a<0 \\ \text { null: } 0 & \text { if and only ifa } a=0\end{cases}
$$

