_			M
٩	Lycée Des Arts	Mathematics	8 th -Grade
	Name:	"Square roots"	A.S-8.3

14244

•• Reminder: Radicals are nothing but fractional powers so whatever works with powers basically works with radicals

Operations on radicals

A. <u>Multiplication and division</u>:

 \Rightarrow How to express $\sqrt{b} \times \sqrt{d}$, where c & d are positive real numbers in form of one radical (one neuron):

1. Observe and write in form of one radical (**one power**):

One exponent	$2^3 \times 5^3 = (5)^3$	$11^7 \times 3^7 =$	$\frac{14^5}{9^5} = \left(\frac{14}{9}\right)^5$	$\frac{17^8}{21^8} =$
One radical	$\sqrt{7} \times \sqrt{3} = \sqrt{7 \times 3}$	$\sqrt{2} \times \sqrt{13} =$	$\frac{\sqrt{5}}{\sqrt{11}} = \sqrt{\frac{7}{11}}$	$\frac{\sqrt{15}}{\sqrt{13}} =$

\Rightarrow Ex-1. Observe and express in simplest form possible:

$\sqrt{3} \times \sqrt{3} = \left(\sqrt{3}\right)^2 = 3$	$\sqrt{5} \times \sqrt{12} = \sqrt{5} \times \sqrt{2^2 \times 3} = 2\sqrt{15}$		
$\sqrt{5} \times \sqrt{5} =$	$\sqrt{7} \times \sqrt{18} =$	$\sqrt{5} \times \sqrt{5} =$	
$\sqrt{11} \times \sqrt{11} =$	$\sqrt{13} \times \sqrt{50} =$	$\sqrt{7} \times \sqrt{18} =$	

 \Rightarrow How to express $a\sqrt{b} \times b\sqrt{d}$ in form of $e\sqrt{f}$, where *c*, *d* & *f* are positive real numbers

To express $a\sqrt{b} \times b\sqrt{d}$, in form of $e\sqrt{f}$ We multiply coefficient by coefficient and radicand by radicand $3\sqrt{5} \times 2\sqrt{7} = (3 \times 2)\sqrt{5 \times 7} = 6\sqrt{35}$

 \Rightarrow Ex-2. Observe and write in form of $e\sqrt{f}$, where f is a positive real number:

 $2\sqrt{3} \times 5\sqrt{7} = (2 \times 5)\sqrt{3 \times 7} = 10\sqrt{21}$ $3\sqrt{5} \times 2\sqrt{15} = 6\sqrt{5^2 \times 3} = 30\sqrt{3}$ $2\sqrt{11} \times 7\sqrt{3} =$ $-2\sqrt{5} \times 3\sqrt{2} =$ $13\sqrt{6} \times \sqrt{8} =$

••• $\underline{Conclusion: if a \ge 0 \& b > 0}$ then we can write

Expression	Algebraically	In words
$\sqrt{a} \times \sqrt{a}$ a Multiplying the		Multiplying the radical by itself gets the radicand out
$\sqrt{a} \times \sqrt{b}$	$\sqrt{a \times b}$	To multiply two radicals, we multiply the radicands
$a\sqrt{b} \times b\sqrt{d}$	$(a \times b)\sqrt{b \times d}$	We multiply coefficient by coefficient and radicand by radicand

 \bigcirc

$\frac{\sqrt{a}}{\sqrt{b}}$	$\sqrt{\frac{a}{b}}$	To divide two radicals, we divide the radicands
V 10		

B. <u>Addition and subtraction</u>:

Observe how we can express the following in simplest form possible:

Expression	Detailed solution	Explanation
2x + 3(x+1)	$\underbrace{2x}_{} + \underbrace{3x}_{} + 3 = 5x + 3$	Add coefficients of similar monomials
$2\sqrt{7} + 3(\sqrt{7} + 1)$	$2\sqrt{7} + 3\sqrt{7} + 3 = 5\sqrt{7} + 3$	Add coefficients of terms with same radicands

Application:

Ex-3.

Use a **calculator** to compute and many other similar examples of your choice

Expressions	Answer	Generalization
$A = 3\sqrt{2} + 5\sqrt{2}$		
$B = 2\sqrt{3} - 7\sqrt{3}$		
$C = -3\sqrt{5} + 11\sqrt{20}$		
$D = -5\sqrt{2} + 7\sqrt{2} + 3\sqrt{8}$		

Ex-4.

Express without using calculator the following in simplest form possible:

Expressions	Answer
$E = 5\sqrt{3} + 7\sqrt{3}$	
$F = -2\sqrt{5} - 3\sqrt{45}$	
$\mathbf{G} = -3x\sqrt{2} + 11x\sqrt{8}$	
$H = 5\sqrt{2x - 1} + 7\sqrt{18x - 9} x > 1$	

••• Conclusion: if
$$a \ge 0$$
, then we can write $b\sqrt{a} + c\sqrt{a} = (b+c)\sqrt{a}$

C. <u>Rationalization</u>:

- $\checkmark\,$ Def: Rationalization is to eliminate the radical sign
- \checkmark To rationalize the denominator is to eliminate the radical from the denominator
- ✓ How to rationalize?
 - To rationalize we multiply both numerator and denominator of the fraction by the conjugate of the denominator

Reminder: $(a + b)(a - b) = a^2 - b^2$

Find the term (factor), that if multiplied by the given term (factor) the radical will be eliminated:

No.	o. Term Its conjugate		Product of the term by its conjugate	In general, Conjugate of
1	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2} \times \sqrt{2} = 2$	\sqrt{a} is \sqrt{a}
2	$3\sqrt{5}$	$\sqrt{5}$	$3\sqrt{5} \times \sqrt{5} = 15$	$b\sqrt{a}$ is \sqrt{a}
3	$3\sqrt{2}-2\sqrt{3}$	$3\sqrt{2} + 2\sqrt{3}$	$\left(3\sqrt{2}\right)^2 - \left(2\sqrt{3}\right)^2 = 6$	$(b\sqrt{a}-c\sqrt{d})$ is $(b\sqrt{a}+c\sqrt{d})$
4	$2\sqrt{5} + 1$	$2\sqrt{5}-1$	$(2\sqrt{5})^2 - (1)^2 = 19$	$(b\sqrt{a} + c\sqrt{d})$ is $(b\sqrt{a} - c\sqrt{d})$

 \Rightarrow Application: Observe how we can eliminate the radical from the denominator of:

(Rationalize the denominator)

$$\checkmark \quad \frac{3-\sqrt{2}}{\sqrt{5}} = \frac{3-\sqrt{2}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}-\sqrt{10}}{5}$$

$$\checkmark \quad \frac{1+3\sqrt{5}}{\sqrt{5}-1} = \frac{(1+3\sqrt{5})}{(\sqrt{5}-1)} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)} = \frac{1+\sqrt{5}+3\sqrt{5}+3(\sqrt{5})^2}{(\sqrt{5}-1)(\sqrt{5}+1)} = \frac{1+4\sqrt{5}+3(5)}{(\sqrt{5})^2-(1)^2} = \frac{16+4\sqrt{5}}{4} = \frac{4(4+\sqrt{5})}{4} = 4 + \sqrt{5}$$

Ex-5. Rationalize the following:

1)
$$\frac{5-7\sqrt{6}}{3\sqrt{2}}$$

2) $3-2\sqrt{5}$

2)
$$\frac{1}{2\sqrt{3}-1}$$

5-2 $\sqrt{3}$

3)
$$\frac{3}{2\sqrt{3}-3\sqrt{2}}$$

Reminder:

```
Ex-6: Compute: (3 + 5)^2 = \dots
Ex-7. Calculate:
```

 $(3^2 - 2^2)^2 = \dots$

Values of <i>a</i> & <i>b</i>	$\sqrt{a^2 + b^2}$	$\sqrt{a^2} + \sqrt{b^2}$	Compare: $\sqrt{a^2 + b^2} \& \sqrt{a^2} + \sqrt{b^2}$
a = 1 & b = 1			
a = 5 & b = -4			
a = 4 & b = 5			

- a) What do you notice?
- b) Is it true that: $\sqrt{a \pm b} \le \sqrt{a} + \sqrt{b}$?
-
- c) Complete the following table:

Compute the numerical value of	For $x = 1$	For $x = 0$	For $x = 3$	For $x = 5$
$A = \sqrt{(x-2)^2}$				

i- Is it true that $\sqrt{(x-2)^2} = x - 2$, for all real values of x? Explain.

ii- For what values of x, is A = 0?

.....

iii- Express $\sqrt{(x-2)^2}$ without radical sign. (indicate all cases)

.....

$$\operatorname{Remark:} \sqrt{a^2} = \begin{cases} itself: +a & if and only if a > 0\\ its opp: -a & if and only if a < 0\\ null: 0 & if and only if a = 0 \end{cases}$$