Lycée Des Arts
Mathematics
Name:
"Square roots"
\hbar Notion about numbers:

1. Natural numbers:

Write down numbers that you use for counting the number of pages of a book or any other thing we use:
$\underline{E x}_{1}$: Consider the set of numbers $\{1,2,3,4,5, \ldots$.$\} .$
a) Trace a number line and place the above numbers on it.
b) What do you notice about the position of these numbers on the number line?
$\underline{\text { Ex2 }}$: Consider the following equations:1) $x+3=5 \quad$ 2) $2 x+5=3$
a) Solve equation- 1 for x in the set \mathbb{N}.
\qquad
b) If you are only familiar with the set of natural numbers, then can you find a value of x that satisfies equation-2? Show your work.
c) What suggestions would you make to have a solution for equation-2?

2. Integers:

As you noticed, from the above example that some equations of the form $x+a=b$, where $a \& b$ belong to \mathbb{N} cannot be solved in the set \mathbb{N}.
$\underline{E x}$: What type of numbers would you use to represent the following situations?

- Temperature below zero.
- Down slopes.
- Value that verifies: $x+3=2$
- Places below ground floor - Loss.
$>$ So we will extend the set \mathbb{N} to the set of integers \mathbb{Z}, which stands for $\underline{\text { Zahlen }}$.
> The set of integers consists of numbers such as:

$\underline{E x} 4$: Describe the set of integers in terms of natural numbers.

Conclusions:

1) The set of integers is denoted by: $\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$.

Exs: Solve the following equations in \mathbb{Z} :
$>x^{2}-4=0$ \qquad
> $2 x+3=0$ \qquad

3. Rational numbers:

\mathbb{Z}, is insufficient to solve some equations of the form $a x+b=0$, where $a \& b b e l o n g$ to \mathbb{Z}.
So, we will extend the set \mathbb{Z} into the set of rational numbers.
Example: $\frac{2}{3},-\frac{4}{5}, \frac{2}{1}, \frac{1}{3}$, are rational numbers.

Conclusions:

1) The set of rational numbers is denoted by: $Q=\left\{\ldots-\frac{1}{3},-\frac{1}{2},-1,0, \frac{1}{3}, \frac{3}{2}, \frac{35}{4} \ldots\right\}$.
2) A number is rational if that can be written in the ratio form, $\frac{a}{b}$, where $a \& b$ are integers such that $b \neq 0$.

A rational number can be written in decimal form.
Decimal form of a rational number:
follow बnet A number in decimal form is said to be rational if: (01)

4. Irrational numbers:

1) Determine the measure of the diagonal of the rectangle $A B C D$ of dimensions $3 \mathrm{~cm} \& 4 \mathrm{~cm}$.
2) Calculate the exact value of the diagonal of a square whose side is 3 cm .
\qquad
3) Find the length of the diagonal in decimal form:
4) Are the above numbers rational numbers? Justify

Note that: Such numbers are called irrational numbers.
5) Give three or more examples of irrational numbers:
6) Complete the following Venn diagram with the suitable terms to determine the relation among different subsets of real numbers (Natural numbers, integers, decimal numbers, ...) Give examples.

RealNumbers

Rational	Irrational

