Al-Mahdi High School

Mathematics Function Derivative

Focusing events:

a) Between which two consecutive points is the average rate of change of f the greatest?

- b) At what points is the instantaneous rate of change of f is positive, negative and zero?
- 2- A car is parked with its windows & doors closed for five hours. The temperature inside the car is given by the function f defined by $f(t) = 2\sqrt{t^3} + 17$, where t is time for which the car is first closed.

- a) Find the average rate of change of the temperature from t = 1hr to t = 4hrs.
- b) Find the function that gives the instantaneous rate of change of the temperature for any time t, where 0 < t < 5.

Geometric meaning of derivatives:

Consider in the system of axes (O, i, j) the functions f & g defined respectively by: I $f(x) = x^2 - 1 \& x \longrightarrow 2x - 1 \&$ their representative curves $C_f \& (d)$ over \mathbb{R} .

- c. What does the equation (E) defined by f(x) = g(x) tell you?
- *d.* Solve (*E*).....
- e. Answer by true or false, and justify each:
 - i. (d) is tangent to C_f
 - ii. (d) is secant to C_f
- f. What happens to (d) as the point: 1) A approaches B?
- 2) *B* approaches *A*? g. How many tangents, does C_f admit?
- Let f & g be two functions in the system (O, i, j), where f is defined by: $f(x) = x^2$ IIand the representative curves $C_f \& (d)$ over \mathbb{R} .
 - a. Use the adjacent graph to determine the equation of (d).
 - b. Prove that the equation (E): g(x) = f(x) admits one double root, to be determined

- c. What does (d) represent to C_f ?.....
- d. Indicate the slope of (d)
- e. Calculate $r = \lim_{x \to x_B} \frac{f(x) f(x_B)}{x x_B}$...
- f. Compare the value of r with the slant of (d)......
- g. What does r represent?

The derivative of a function at a point of abscissa x_o is denoted by $f'(x_o)$ where $f'(x_o)$ is the slope of the tangent (T) to C_f at x_o . $f'(x_o) = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}$

> Reminder: How to find equation of a straight line:

Passing through any two given points $A \& B$	$\frac{y - y_A}{x - x_A} = \frac{y_B - y_A}{x_B - x_A}$
Having a slope a and a point A	$y - y_A = a(x - x_A)$

III- Find the equation of A & B the tangent line to the curve of the function $f: f(x) = x^2 - 1$ at a point A of abscissa x = 1.

- IV- In the adjacent graph, as A & B varies on C_f , the straight lines (l)&(d) remain tangent to C_f at A & B for all $x \in]-\infty,0[\& x \in]0,+\infty[$ respectively.
 - a. Complete the table:

•	Complete the table.		
	Values of x]-∞,0[]0,+∞[
	Sign of slope of $(l) & (d)$		
	Sense of variation of C_f		

- 3 -2 -1 0 0 1 2 -1 (d)
- b. What do you notice?
- c. Complete the following statements: