The Islamic Institution For Education & Teaching Al-Mahdi SchoolsMathematics Department Answer Key								
Class:	1 (Scientific) Mid Year Exam 201 Elements of the Answer	2014-2015						
×		9	$g'(x) = \frac{-8x}{x}$	1				
Ι	1	a h	$s^{(x)} (x-1)^3$ $h'(x) = \frac{-1}{-1}$	1				
	2	a	$\frac{-4}{x^2+2} \le f(x) \le \frac{2}{x^2+2}$	1				
		b	$\frac{-4}{x^2+2} \le f(x) \le \frac{2}{x^2+2}; \lim_{x \to +\infty} \left(\frac{-4}{x^2+2}\right) \le \lim_{x \to +\infty} f(x) \le \lim_{x \to +\infty} \left(\frac{2}{x^2+2}\right);$ $0 \le \lim_{x \to +\infty} f(x) \le 0; \lim_{x \to +\infty} f(x) = 0$	0.5				
	3		$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} \frac{x^2 - 5x + 4}{18x - 72} = \lim_{x \to 4^{+}} \frac{(x - 1)(x - 4)}{18(x - 4)} = \lim_{x \to 4^{+}} \frac{x - 1}{18} = \frac{1}{6} ;$	1				
		a	$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \frac{5 - \sqrt{x} + 5}{4 - x} = \lim_{x \to 4^+} \frac{5 - \sqrt{x} + 5}{4 - x} \times \frac{5 + \sqrt{x} + 5}{3 + \sqrt{x} + 5} = \lim_{x \to 4^+} \frac{4 - x}{(4 - x)(3 + \sqrt{x} + 5)}$ $= \lim_{x \to 4^+} \frac{1}{(4 - x)(3 + \sqrt{x} + 5)} = \frac{1}{4 - x}$	1				
		b	$\lim_{x \to 4^{+}} 3 + \sqrt{x} + 5 6$ $\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = f(4); \ b - 1 = \frac{1}{6}; \ b = \frac{7}{6}$	0.5				
	1		$m^2 + 6m + 5 = 0; m = -1 \text{ or } m = -5$	0.5				
п	2		$\Delta > 0; -8m - 4 > 0; m < -\frac{1}{2}$	1				
	3		$\frac{mS}{P} \ge 0; \frac{2m(m-1)}{m^2+2} \ge 0; m < 0 \text{ or } m > 1. \text{ But the roots exist when } m \le -\frac{1}{2}.$ Thus $m \le -\frac{1}{2}$	1				
ш	1		$U_1 = 2 \text{ and } U_2 = \frac{5}{2}$	0.25 0.25				
	2		$U_2 - U_1 \neq U_1 - U_0$ since $U_2 - U_1 = \frac{1}{2}$ and $U_1 - U_0 = 1$; then (U_n) is not arithmetic $\frac{U_2}{U_1} \neq \frac{U_1}{U_0}$ since $\frac{U_2}{U_1} = \frac{5}{4}$ and $\frac{U_1}{U_0} = 2$; then (U_n) is not geometric	0.5 0.5				
	3		$U_{n+1} - U_n = \frac{1}{2^n}$; (U _n) is strictly increasing since $U_{n+1} - U_n > 0$	0.25 0.25				
	4	a	$\frac{V_{n+1}}{V_n} = \frac{1}{2}$ which is a constant, then (V _n) is a geometric sequence; $r = \frac{1}{2}$ and $V_0 = 1$	0.5 0.25 0.25				
		b	$V_n = \frac{1}{2^n}; V_{10} = \frac{1}{2^{10}} = \frac{1}{1024}$	0.25 0.25				
		c	$S = \frac{V_0(1 - r^{n+1})}{1 - r} = 2 - \frac{1}{2^n}$	0.5				

	1		$(x-2)^2 + (y-3)^2 = 13$; I(2, 3) and R = $\sqrt{13}$ u	0.5
IV	2		BI = $\sqrt{26}$ u; BI > R, then B is at the exterior of the circle	0.25
	a		m(1) - (-2) - m - 2 = 0	0.5
	3	b	(d _m) tangent to (C); d(I, (d _m)) = R; $\frac{ m(2)-3-m-2 }{\sqrt{m^2+1}} = \sqrt{13}$; $ m-5 ^2 = 13(m^2+1)$; $6m^2 + 5m - 6 = 0$; $m = \frac{3}{2}$ or $m = \frac{2}{3}$	1
		c	The tangent lines are of equations: $y = \frac{3}{2}x - \frac{7}{2}$ and $y = \frac{2}{3}x - \frac{8}{3}$	0.5
v	1		$\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{12} + \frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{2}\right) = 1.$	1
	2		$\tan(2x) - \tan(x) = \frac{\sin(2x)}{\cos(2x)} - \frac{\sin(x)}{\cos(x)} = \frac{\sin(2x)\cos(x) - \sin(x)\cos(2x)}{\cos(2x)\cos(x)} = \frac{\sin(2x-x)}{\cos(2x)\cos(x)} = \frac{\tan(x)}{\cos(2x)}$	1.5
	3		$\cos(2x) = 1 - 2\sin^{2}(x) = \frac{1 + \sqrt{5}}{4}$ $\cos(4x) = 2\cos^{2}(x) - 1 = \frac{-1 + \sqrt{5}}{4} = \sin x$	0.75 0.75
	4		$ (\overrightarrow{AB}, \overrightarrow{BC}) = \frac{\pi}{2}(2\pi); (\overrightarrow{AD}, \overrightarrow{CB}) = \pi(2\pi); (\overrightarrow{OA}, \overrightarrow{BC}) = (\overrightarrow{OA}, \overrightarrow{AD}) = (-\overrightarrow{AO}, \overrightarrow{AD}) = \pi + (\overrightarrow{AO}, \overrightarrow{AD}) = \pi + \frac{\pi}{4} = \frac{5\pi}{4}(2\pi). $	0.25 0.25 0.5
VI	1		$f'(x) = \frac{-ax^2 - 2bx + 6x + a}{(x^2 + 1)^2}$	0.75
	2		A \in (C); b = 3 (AB) tangent to (C); f '(x _A) = slope of (AB) = 2; f '(0) = 2; a = 2	0.25 1
VII	1		$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to +\infty} f(x) = +\infty$	0.25 0.25
	2		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	3		On the interval $]-\infty$, 1[: f is continuous and strictly increasing, and f(x) changes signs from $-\infty$ to +1; then the equation f(x) = 0 has a unique root α . f(-0.2) = and f(-0.1) = ; f(-0.2) × f(-0.1) < 0, then $-0.2 < \alpha < -0.1$	0.5 0.5
	4		y = 9x + 1	1
	5		At x = 2: f''(2) = 0 and f''(x) changes signs (- to +). I(2, 3) $\frac{x -\infty 2 +\infty}{f''(x) - \phi +}$	0.75
	7		$f(x) > 0$ when $x > \alpha$. 6	0.5
	8	a	$D_{g} = \mathbb{R} \text{ centered at zero and} (1 \text{ pt})$ $g(-x) = f(-x) = f(x) = g(x)$	0.5
		b	If $x \ge 0$: (G) \equiv (C) If $x < 0$: (G) is the symmetric of the first drawn part with respect to the ordinate axis	0.5 (cnstrct) 0.5 (G)